Answer:
Option D, only on the portion of the Earth facing directly toward the Moon
Explanation:
Tides are caused by the gravitational pull of moon. The part of earth that faces the moon experiences the highest gravitational force and hence the high tides will occur in this regions only. The regions that do not faces the moon experiences low tides. It is the gravity of moon that attracts the ocean water towards itself.
Hence, Option D is correct
Answer:48.2 Joules
Explanation:
Given
two masses of 0.2 kg and 0.4 kg collide with each other
after collision 0.2 kg deflect 30 north of east and 0.4 kg deflects 53.1 south of east
Velocity of 0.2 kg mass is


Velocity of 0.4 kg mass


Thus total Kinetic energy 
Kinetic energy=48.2 J
Answer:
F = 39.36 N
Explanation:
given,
initial speed, u = 38 m/s
final speed, v = 0 m/s
mass of ball = 0.145 Kg
time, t = 0.14 s
Force = ?
using impulse formula
J = change in momentum
J = F x t
m(v - u) = F x t
0.145 x (0 - (-38)) = F x 0.14
F x 0.14 = 5.51
F = 39.36 N
force exerted by the ball is equal to 39.36 N.
Answer: It would destroy the Earth's surface.
I remember reading this questions in What If? by Randall Munroe. Great book, I suggest you check it out. Anyway, the answer. The Earth is revolving as well as spinning on its axis at the same time. This basically means that thee atmosphere is also spinning at the same speed. But due to the frame of reference, we don't notice anything. If the Earth suddenly stops spinning, then the atmosphere, going according to the first law of motion will still be spinning at the same speed. This would produce supersonic winds at such a scale that it will be compared to an atomic explosion. Anything not in a nuclear bunker will probably be ripped apart by the force of the wind.
You finna have to pay me lol what it look like though and i’ll see if it’s worth it make some