Answer: 47.6 m/s
Explanation: Please see attached for the calculation and formula.
<u>Answer</u>:
Effort is the unaltered force. Load is the altered force.
Answer:
1.08 m/s
Explanation:
This can be solved with two steps, first we need to find the time taken to fall 9.5 m, then we can divide the horizontal distance covered with time taken to calculate the velocity.
Time taken to fall 9.5 m
vertical acceleration = a = 9.8 m/s^2.
vertical velocity = 0, (since there is only horizontal component for velocity,
)
distance traveled s = 9.5 m.
Substituting these values in the equation



⇒ t= 1.392 sec
Velocity needed
We know the time taken (1.392 s) to travel 1.5 m,
So velocity = 1.5 m / 1.392 s = 1.08 m/s
hence velocity of the diver must be at least 1.08 m/s
Answer:V₁=300ml
T₁=27°C
V₂=?
T₂= -3°C
as we know
V₁T₁=V₂T₂
By putting values in formula
300ml×27°C=V₂×(-3°C)
300ml×27°C/-3°C=V₂
8100ml/-3=V₂
-2700ml=V₂
or V₂= -2700ml
Answer:
θ = 225 rad
Explanation:
given data
angle = 25 rad
to find out
angular velocity after 3t?
solution
let angular acceleration α in t
θ = ω × t + 0.5 × α × t² ........................1
here ω = 0 (initial velocity )
so put this value here
25 = 0 + 0.5 × α × t² ..........................2
α = 25 ÷ (0.5 t²)
α = 50 ÷ t² .........................3
now here we take in 3t
θ = ω × 3t + 0.5 × α × (3t)²
for ω = 0
θ = 0 + 0.5 × α × 9t²
now put value in eq 2
so
θ = (0.5) × (50 ÷ t²) × (3t)²
θ = 25 × 9
θ = 225 rad