When in doubt guess c is what they say
Answer:
There are 220 ways by which the medals can be awarded to three of the 15 gymnast, if exactly one of the Americans wins a medal
Step-by-step explanation:
From the question, we have;
The number of gymnast in the Olympic women's competition = 15
The number of the gymnast who are Americans = 4
The number of medals awarded = 3 medals
The number of ways hat the medals can be awarded to the three of the gymnast if exactly one of the Americans wins a medal is given as follows;
The number of ways one of the medals can be won by one of the four Americans = ₄C₁ = 4 ways
The number of ways the other two medals can be won by the remaining 11 gymnast = ₁₁C₂ = 55 ways
Therefore, the total number of ways, 'N', the medals can be awarded to three of the 15 gymnast, if exactly one of the Americans wins a medal is given as follows;
N = ₄C₁ × ₁₁C₂
∴ N = 4 × 55 = 220
First, fint the roots of the equation
1.

2. You can see that this equation has two different real roots. Note that you can make this statement without finding roots, only knowing the value of discriminant: since D=81>0, then the equation has two different real roots.
Divide 22 by 2 to get "c" isolated.
x - √3y - 4 = 0 → <u>Choice</u><u> </u><u>A</u>
Step-by-step explanation:
x - 4 = √3y
x - 4 <u>- √3y</u> = √3y <u>- √3y</u>
x - 4 - √3y = 0
x - √3y - 4 = 0