Answer:
<h3>40 units</h3><h3 />
Step-by-step explanation:
perimeter = add up all sides
= 8 + 15 + 17
= 40 units
see image below
The quotient of 2 negative integers results in an integer.
-4/-2 = 2
the value of the quotient is positive whereas, the value of the original 2 integers are both negative. The reason being, is that when u divide two negatives, u get a positive.
Answer:
c).3
Step-by-step explanation:
let the number be x
5x-3=x+9
collect like terms
5x-x=9+3
4x= 12
divide both sides by 4
x=3
the number is 3
Answer:
1. x < −6
2. x < 3.2
3. x < 4
4. x>12.5
5. ? there is no "<, >" sign
6. b<5
7. z<−2.1
pls give brainliest
Step-by-step explanation:
see photos for explanation
I'll give you an example from topology that might help - even if you don't know topology, the distinction between the proof styles should be clear.
Proposition: Let
S
be a closed subset of a complete metric space (,)
(
E
,
d
)
. Then the metric space (,)
(
S
,
d
)
is complete.
Proof Outline: Cauchy sequences in (,)
(
S
,
d
)
converge in (,)
(
E
,
d
)
by completeness, and since (,)
(
S
,
d
)
is closed, convergent sequences of points in (,)
(
S
,
d
)
converge in (,)
(
S
,
d
)
, so any Cauchy sequence of points in (,)
(
S
,
d
)
must converge in (,)
(
S
,
d
)
.
Proof: Let ()
(
a
n
)
be a Cauchy sequence in (,)
(
S
,
d
)
. Then each ∈
a
n
∈
E
since ⊆
S
⊆
E
, so we may treat ()
(
a
n
)
as a sequence in (,)
(
E
,
d
)
. By completeness of (,)
(
E
,
d
)
, →
a
n
→
a
for some point ∈
a
∈
E
. Since
S
is closed,
S
contains all of its limit points, implying that any convergent sequence of points of
S
must converge to a point of
S
. This shows that ∈
a
∈
S
, and so we see that →∈
a
n
→
a
∈
S
. As ()
(
a
n
)
was arbitrary, we see that Cauchy sequences in (,)
(
S
,
d
)
converge in (,)
(
S
,
d
)
, which is what we wanted to show.
The main difference here is the level of detail in the proofs. In the outline, we left out most of the details that are intuitively clear, providing the main idea so that a reader could fill in the details for themselves. In the actual proof, we go through the trouble of providing the more subtle details to make the argument more rigorous - ideally, a reader of a more complete proof should not be left wondering about any gaps in logic.
(There is another type of proof called a formal proof, in which everything is derived from first principles using mathematical logic. This type of proof is entirely rigorous but almost always very lengthy, so we typically sacrifice some rigor in favor of clarity.)
As you learn more about a topic, your proofs typically begin to approach proof outlines, since things that may not have seemed obvious before become intuitive and clear. When you are first learning it is best to go through the detailed proof to make sure that you understand everything as well as you think you do, and only once you have mastered a subject do you allow yourself to omit obvious details that should be clear to someone who understands the subject on the same level as you.