The question is somewhat poorly posed because the equation doesn't involve <em>θ</em> at all. I assume the author meant to use <em>x</em>.
sec(<em>x</em>) = csc(<em>x</em>)
By definition of secant and cosecant,
1/cos(<em>x</em>) = 1/sin(<em>x</em>)
Multiply both sides by sin(<em>x</em>) :
sin(<em>x</em>)/cos(<em>x</em>) = sin(<em>x</em>)/sin(<em>x</em>)
As long as sin(<em>x</em>) ≠ 0, this reduces to
sin(<em>x</em>)/cos(<em>x</em>) = 1
By definition of tangent,
tan(<em>x</em>) = 1
Solve for <em>x</em> :
<em>x</em> = arctan(1) + <em>nπ</em>
<em>x</em> = <em>π</em>/4 + <em>nπ</em>
(where <em>n</em> is any integer)
In the interval 0 ≤ <em>x</em> ≤ 2<em>π</em>, you get 2 solutions when <em>n</em> = 0 and <em>n</em> = 1 of
<em>x</em> = <em>π</em>/4 <u>or</u> <em>x</em> = 5<em>π</em>/4
B) is correct; on average, each bag of candy has a weight that is 2.6 oz different than the mean weight of 5 oz.
To find the mean absolute deviation, we first find the mean. Find the sum of the data points and divide by the number of data points (without the outlier, 21, in it):
(10+3+7+3+4+6+10+1+2+4)/10 = 50/10 = 5
Now we find the difference between each data point and the mean, take its absolute value, and find their sum:
|10-5|+|3-5|+|7-5|+|3-5|+|4-5|+|6-5|+|10-5|+|1-5|+|2-5|+|4-5| =
5+2+2+2+1+1+5+4+3+1 = 26
We now divide this by the number of data points:
26/10 = 2.6
This is a measure of how much each bag of candy varies from the mean.
An object's dimensions are: length of 25cm, wight of 10cm, and height of 15cm. calculate the object's density if its mass is 3000g