Answer:
final pressure ( P2) = 467.37 mm Hg
Explanation:
ideal gas:
∴ P1 = 570 mm Hg * ( atm / 760 mm Hg ) = 0.75 atm
∴ T1 = 25 ° C = 298 K
∴ V1 = 1.250 L
∴ R = 0.082 atm L / K mol
⇒ n = P1*V1 / R*T1
⇒ n = (( 0.75 ) * ( 1.25 )) / (( 0.082 ) * ( 298 ))
⇒ n = 0.038 mol gas
∴ T2 = 175 °C ( 448 K )
∴ V2 = 2.270 L
⇒ P2 = nRT2 / V2
⇒ P2 = (( 0.038 ) * ( 0.082 ) * ( 448 )) / 2.270
⇒ P2 = 0.615 atm * ( 760 mm Hg / atm ) = 467.37 mm Hg
Answer:
The volume will be 0.031 L
Explanation:
Since temperature is constant, Boyle's law is applied in this case.
Boyle's law States that at constant temperature, the volume of a given mass of a gas is inversely proportional to it's pressure.
From this statement it was deduced that P1V1 = P2V2
From the question, P1 = 1atm, V1 = 1.55L, P2 = 50 atm and V2 is to be calculated.
V2 = P1V1/P2
= 1×1.55÷50
=0.031 L
Answer:
Molarity of NaOH solution is 1.009 M
Explanation:
Molar mass of HCl is 36.46 g/mol
Number moles = (mass)/(molar mass)
So, 0.8115 g of HCl =
HCl = 0.02226 moles HCl
1 mol of NaOH neutralizes 1 mol of HCl.
So, if molarity of NaOH solution is S(M) then moles of NaOH required to reach endpoint is 
So, 
or, S = 1.009
So, molarity of NaOH solution is 1.009 M
1. Take 100ml of water as solvent and boil it few minutes.
2. Now add one tea spoon sugar, one tea spoon tea leaves and 50ml of milk. Here sugar, tea leaves and milk are solute.
3. Now boil it again for few minutes so that sugar will dissolves in solution as sugar is soluble in water
4. Now filter the solution. Collect the filtrate in cup. The insoluble tea leaves will be left behind as residue.