Answer:
A hot air balloon taking off
Explanation:
First, it is best to know the chemical formula of pyridine which is C5H5N. To determine the number of carbon atoms present in pyridine, multiply 7.05 mol C5H5N with 5 mol C/ 1 mol C5H5N which then results to 35.35 mol of carbon. Then, multiply the answer to Avogadro's number which is 6.022x10^23 atoms. It is then calculated that the number of carbon atoms in 7.05 moles of pyridine is 2.12x10^25 atoms.
Silver (Ag) is the number of atoms per unit cell for each metal. Silver has a face-centred cubic (FCC) unit cell structure, where there are 8 corner atoms and 6 atoms on the faces, so there are a total of 4 atoms per unit cell.
The identical unit cells are defined in such a way that they take up space without touching one another. A crystal's internal 3D arrangement of atoms, molecules, or ions is known as its lattice. It consists of a large number of unit cells. Every point of the lattice is occupied by one of the three component particles.
Primitive cubic, body-centred cubic (BCC), and face-centred cubic are the three types of unit cells (FCC). The three different sorts of unit cells will be thoroughly covered in this section.
To learn more about the unit cell refer here:
brainly.com/question/13433017
#SPJ4
Answer:In regards to writing the formula, we know that magnesium has a charge of 1+ and sulfate, SO4, has a charge of 1-. Sulfate is a polyatomic ion so the charge of the whole thing is (SO4)1-. When you combine them you end up with MgSO4 and the "heptahydrate" is seven water molecules.
Explanation:
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.