Answer:
1.327 g Ag₂CrO₄
Explanation:
The reaction that takes place is:
- 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq)
First we need to <em>identify the limiting reactant</em>:
We have:
- 0.20 M * 50.0 mL = 10 mmol of AgNO₃
- 0.10 M * 40.0 mL = 4 mmol of K₂CrO₄
If 4 mmol of K₂CrO₄ were to react completely, it would require (4*2) 8 mmol of AgNO₃. There's more than 8 mmol of AgNO₃ so AgNO₃ is the excess reactant. <em><u>That makes K₂CrO₄ the limiting reactant</u></em>.
Now we <u>calculate the mass of Ag₂CrO₄ formed</u>, using the <em>limiting reactant</em>:
- 4 mmol K₂CrO₄ *
= 1326.92 mg Ag₂CrO₄
- 1326.92 mg / 1000 = 1.327 g Ag₂CrO₄
Answer:
Carbon tetrachloride would be 2.2 fold heavier than water
Explanation:
Carbon tetrachloride (2.20g/mL) is denser than water (1.00g/mL)
Answer:
Double replacement
Precipitation reaction
Explanation:
You have the reaction:
REACTANTS PRODUCTS
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
The general form of a double replacement reaction is the following:
AB + CD ⇒ CD + AB
The reactants basically, exchanged partners. In the case of your problem, Barium(Ba) and Sodium(Na) switched places. So this makes it a double-replacement reaction.
Now how do I know it is a precipitation reaction. A precipitation reaction occurs when two solutions combine and salt is formed. Salt is solid, so how do I know that's what occured? Look at your equation again:
BaCl₂ (aq) + Na₂SO₄ (aq) ⇒ 2NaCl (aq) + BaSO₄(s)
aq means aqueous (liquid)
s means solid
If you look at the product formed in the reaction, from two solutions, it formed a solid. So this is your clue as to why it is a precipitation reaction.