Answer is: concentratio of H₃O⁺ ions is 4.2·10⁻³ M.<span>
Chemical reaction: HCOOH(aq) + H</span>₂O(l) ⇄ HCOO⁻(aq) + H₃O⁺(aq).<span>
c(HCOOH) = 0,1 M.
[</span>H₃O⁺] = [HCOO⁻] = x.<span>
[HCOOH] = 0,1 M - x.
</span>Ka = [H₃O⁺] · [HCOO⁻] / [HCOOH].
0,00018 = x² / (0,1 M - x).<span>
Solve quadratic equation: x = </span>[H₃O⁺] = 0,0042 M.
The energy range expected is 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
The energy of the photon is given by;
E = hc/λ
E = energy of the photon
h = Plank's constant
c = speed of light
λ = wavelength of light
For the upper boundary range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ = 270 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 270 × 10^-9
E = 7.33 × 10^-19 J
For the lower range;
E = ?
h = 6.6 × 10^-34 Js
c = 3 × 10^8 m/s
λ =300 × 10^-9
E = 6.6 × 10^-34 Js × 3 × 10^8 m/s / 300 × 10^-9
E = 6.6 × 10^-19 J
Hence, the energy range 6.6 × 10^-19 J < E < 7.33 × 10^-19 J
Learn more: brainly.com/question/24857760
Answer:
1000 µL; 10 µL
Explanation:
A p1000 micropipet is set to dispense 1000 µL.
A p10 micropipet set to dispense 10 µL.
Answer:
i would assume that it would be (a)
Explanation:
The Sun generates its energy by nuclear fusion
NUCLEAR FISSION is when the heavy atom is split
fusion energy is scientifically feasible. Plasma conditions that are very close to those required in a fusion reactor are now routinely reached in experiments
mass gets lost is nuclear fusion
so (a) is the most accurate
Answer:
1.840 x 10⁻³ mol HBrO₃
Explanation:
To find the moles of bromic acid (HBrO₃), you should (1) convert milligrams to grams (by dividing by 1,000) and then (2) convert moles to grams (via molar mass from periodic table).
Molar Mass (HBrO₃): 1.008 g/mol + 79.904 g/mol + 3(15.998 g/mol)
Molar Mass (HBrO₃): 128.906 g/mol
2.372 x 10² mg HBrO₃ 1 g 1 mole
---------------------------------x----------------x------------------ = 1.840 x 10⁻³ mol HBrO₃
1,000 mg 128.906 g