Answer:
0.025M
Explanation:
As you must see in your graph, each concentration of the experiment has an absorbance. Following the Beer-Lambert's law that states "The absorbance of a solution is directely proportional to its concentration".
At 0.35 of absorbance, the plot has a concentration of:
<h3>0.025M</h3>
The 3% mass/volume H₂O₂ means 3 g of H₂O₂ in 100 ml of water.
Now, Molarity (M) = No. of moles of H₂O₂ / Volume of solution in liter
No. of moles of H₂O₂ = Mass / Molar mass = 3 g / 34 g/mol = 0.088 mol
So, molarity = 0.088 × 1000 ml / 100 ml = 0.88 M
In case of 2.25 % H₂O₂,
No of moles = 2.25 g / 34 g/mol = 0.066 mol
Molarity = 0.066 mol / 0.100 L = 0.66 M.
There are two valence electrons in a single atom of magnesium.
Answer:
D. They are different from the properties of carbon, oxygen, and hydrogen.
Step-by-step explanation:
Carbon, oxygen, and hydrogen are all <em>elements.
</em>
Sucrose is a <em>compound</em> containing carbon, oxygen, and hydrogen. Its properties are different from those of its elements.
For example, carbon is a <em>black solid,</em> while oxygen and hydrogen are <em>colourless gases</em>. Sucrose is a <em>white solid</em>.
I choose question 1, so molarity is the concentration of a soulution expressed as the number of moles of solute by the litress of soulution. to get molarity you divide the moles of soulute by the litress of solution. soo 1 calculate the number of moles of solute present. 2 Calculate the number of litress solution present. 3. divide the number of moles of solute by the number of litress of solution
soo 1 mol of NaOH has a mass of 40.00 g, so moles of NaOH= 26.7. 1 mole divided 40.00 = 0.375. litress of solution = 650 g. im not sure why its a g i usally do it Ls so i guess its the way your teacher wants you to do it so do you know how to do that. so molarity = moles of solute and litress solution. sorry this probably didnt help i just wanted to add something that might help. im still working on this stuff myself hope this helps.