is the potential energy of the ball as it is half way through the fall, 20 meters high
<u>Explanation:</u>
Given data:
Height of the fall = 20 m
Given that the body is half-way through the fall, it is at above the ground 10 m

We need to find its potential energy (P.E)
Energy due to the body’s position is referred as potential energy. It means the energy when body is at rest. It can be expressed as below,

Where
m – The body’s mass
g - Acceleration due to gravity 
h - Height of the body
By substituting the given values, we get

Since the mass is not provided, just kept it.
Fe 3+ + SCN- --> FeSCN 2+
<span>.......Fe 3+ .......SCN-.........FeSCN 2+ </span>
<span>I.......0.04..........0.001.............. </span>
<span>C........-x...............-x............. </span>
<span>E.....0.04-x.....0.001-x...........x </span>
<span>Keq = 203.4 = x / (0.04-x)(0.001-x) </span>
<span>203.4 = x / (x^2 - 0.041x + 4x10^-5) </span>
<span>203.4x^2 - 8.34x + 0.00094 = x </span>
<span>203.4x^2 - 9.34x + 0.00094 = 0 </span>
<span>x = -0.0001M or 0.0458M </span>
<span>so, using your Keq, there would be no SCN- or Fe 3+ left.....all would be in the form of FeSCN 2+</span>
Answer:
<em>293.99 g </em>
OR
<em>0.293 Kg</em>
Explanation:
Given data:
Lattice energy of Potassium nitrate (KNO3) = -163.8 kcal/mol
Heat of hydration of KNO3 = -155.5 kcal/mol
Heat to absorb by KNO3 = 101kJ
To find:
Mass of KNO3 to dissolve in water = ?
Solution:
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8)
= 8.3 kcal/mol
We already know,
1 kcal/mol = 4.184 kJ/mole
Therefore,
= 4.184 kJ/mol x 8.3 kcal/mol
= 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved in water.
For 101 kJ of heat would be
= 101/34.73
= 2.908 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass x moles
= 101.1 g/mole x 2.908
= 293.99 g
= 0.293 kg
<em><u>293.99 g potassium nitrate has to dissolve in water to absorb 101 kJ of heat. </u></em>
<span>1.61 × 1023 Multiply by 26.8 to get the answer.161.33 x 10 ^23 </span>