Answer:
0.58 atm
Explanation:
Step 1: Given data
- Total pressure of the gaseous mixture (P): 1.05 atm
- Partial pressure of N₂ (pN₂): 0.35 atm
- Partial pressure of H₂ (pH₂): 0.12 atm
- Partial pressure of CO₂ (pCO₂): ?
Step 2: Calculate the partial pressure of CO₂
The total pressure of the gaseous mixture is equal to the sum of the partial pressures of the individual gases.
P = pN₂ + pO₂ + pCO₂
pCO₂ = P - pN₂ - pO₂
pCO₂ = 1.05 atm - 0.35 atm - 0.12 atm = 0.58 atm
The balanced chemical reaction is:
<span>2 I2 + KIO3 + 6 HCl ---------> 5 ICl + KCl + 3 H2O
</span>
We are given the amount of the product to be produced from the reaction. This will be the starting point of our calculations.
28.6 g ICl (1 mol / 162.35 g ICl ) ( 2 mol I2 / 5 mol ICl ) ( 253.81 g I2 / 1 mol I2 ) = 17.88 g I2
Answer:
1
Explanation:
Consider the following reaction:
Phosphorus burn in the presence of air and produced diphosphorus pentoxide.
Chemical equation:
P₄ + O₂ → P₂O₅
Balanced chemical equation:
P₄ + 5O₂ → 2P₂O₅
Equation is balanced because there are four phosphorus atoms ans ten oxygen atoms in both side of equation.
Coefficient with reactant and product:
P₄ 1
O₂ 5
P₂O₅ 2
There is no coefficient written before P₄ it means only one P₄ is present.
The planets and the sun form the solar system. The sun is an enormous star. The planets move around the sun. Mercury,Venus,earth, and Mars are the four small rocky planets. Jupiter, Saturn, Uranus, and Neptune are the four giant gas planets
The rate of reaction that can be measured in the dark by determining the amount of oxygen gas consumed in a period of time is the rate of respiration.
Why?
Plants can undergo two types of reactions involving oxygen:
- <u>Photosynthesis: </u>In this type of reaction, plants use energy from light to synthesize glucose. The chemical reaction for photosynthesis is: 6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂, and this reaction produces oxygen gas in the presence of light, that means that to measure the rate of photsynthesis, you'll need to measure the amount of oxgen gas <u>produced</u> in a period of time.
- <u>Respiration:</u> In this type of reaction, plants convert the energy stored in the chemical bonds of molecules such as glucose to obtain energy. The chemical reaction for respiration is: C₆H₁₂O + 6O₂ → 6H₂O + 6CO₂, since this reaction consumes oxygen gas in the dark, that means that to measure the rate of respiration, you'll need to measure the amount of oxygen gas <u>consumed</u> in a period of time.
Have a nice day!