The thing you MUST do FIRST is look for any H's, O's, or F's in the equation
1)any element just by itself not in a compound, their oxidation number is 0
ex: H2's oxidation number is 0
ex: Ag: oxidation number is 0 if its just something like Ag + BLA = LALA
2) the oxidation number of H is always +1, unless its just by itself (see #1)
3) the oxidation number of O is always -2, unless its just by itself (see #1)
4) the oxidation number of F is always -1, unless its just by itself (see#1)
ok so after you have written those oxidation numbers in rules 1-4 over each H, F, or O atom in the compound, you can look at the elements that we havent talked about yet
for example::::
N2O4
the oxidation number of O is -2.
since there are 4 O's, the charge is -8. now remember that N2O4 has to be neutral so the N2 must have a charge of +8
+8 divided by 2 = +4
N has an oxidation number of +4.
more rules:
5) the sum of oxidation numbers in a compound add up to 0 (when multiplied by the subscripts!!!) (see above example)
6) the sum of oxidation numbers in a polyatomic ion is the charge (for example, PO4 has a charge of (-3) so
oxidation # of O = -2. (there are 4 O's = -8 charge on that side ) P must have an oxidation number of 5. (-8+5= -3), and -3 is the total charge of the polyatomic ion
B. Scientific claims can be verified through observation and experimentation, while pseudoscientific claims cannot. At least I think it is right.
Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
Answer: The green copper (II) carbonate
changes to black copper oxide 

Explanation:
Decomposition is defined as the chemical reaction in which a single compound gives two or more simple substances. It requires energy to break the bonds between reactants, thus is an endothermic process.
Thermal decomposition uses heat for decomposition.
The chemical equation for thermal decomposition of copper (II) carbonate is:

The green copper (II) carbonate
changes to black copper oxide 