Answer:
3
Step-by-step explanation:
Here's the rundown of values:
12=9
9=6
6=3
3rd value=3
*The values are created through going through the numerical process.
The return on equity for the firm is 18.75%.
<h3>Return on equity</h3>
Return on equity=Return on assets +[ (Debt/Equity ratio)×(Return on assets-Return on debt)]
Let plug in the formula
Return on equity=.15+ [(.75)× (.15-.10)]
Return on assets=.15+ (.75×0.05)
Return on assets=.15+0.0375
Return on equity=0.1875×100
Return on equity=18.75%
Therefore the return on equity ratio is 18.75%.
Learn more about return on equity here:
brainly.com/question/5537849
#SPJ1
Something that a right triangle is characterised by is the fact that we may use Pythagoras' theorem to find the length of any one of its sides, given that we know the length of the other two sides. Here, we know the length of the hypotenuse and one other side, therefor we can easily use the theorem to solve for the remaining side.
Now, Pythagoras' Theorem is defined as follows:
c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
Given that we know that c = 24 and a = 8, we can find b by substituting c and a into the formula we defined above:
c^2 = a^2 + b^2
24^2 = 8^2 + b^2 (Substitute c = 24 and a = 8)
b^2 = 24^2 - 8^2 (Subtract 8^2 from both sides)
b = √(24^2 - 8^2) (Take the square root of both sides)
b = √512 (Evaluate 24^2 - 8^2)
b = 16√2 (Simplify √512)
= 22.627 (to three decimal places)
I wasn't sure about whether by 'approximate length' you meant for the length to be rounded to a certain number of decimal places or whether you were meant to do more of an estimate based on your knowledge of surds and powers. If you need any more clarification however don't hesitate to comment below.
Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0