A factor of 30 is chosen at random. What is the probability, as a decimal, that it is a 2-digit number?
The positive whole-number factors of 30 are:
1, 2, 3, 5, 6, 10, 15 and 30.
So, there are 8 of them. Of these, 3 have two digits. Writing each factor on a slip of paper, then putting the slips into a hat, and finally choosing one without looking, get that
P(factor of 30 chosen is a 2-digit number) = number of two-digit factors ÷ number of factors
=38=3×.125=.375
Answer:
He has to pay 15% as that is 32 and more than $25
Step-by-step explanation:
If you take 15% out of 216 it will become 32.
When you divide two fractions, you're actually multiplying one of them by the reciprocal of the other. First, find the reciprocal of the second fraction by flipping it upside down. Then, multiply it by the first fraction. (Numerator x numerator and denominator x denominator)

÷

Replace the second fraction with it's reciprocal

x

Multiply (-7 x 3 and 12 x 2)

Both 21 and 24 are divisible by three, so divide them by 3
Answer:
a) 0.96
b) 0.016
c) 0.018
d) 0.982
e) x = 2
Step-by-step explanation:
We are given with the Probability density function f(x)= 2/x^3 where x > 1.
<em>Firstly we will calculate the general probability that of P(a < X < b) </em>
P(a < X < b) =
=
=
{ Because
}
=
=
=
=
a) Now P(X < 5) = P(1 < X < 5) {because x > 1 }
Comparing with general probability we get,
P(1 < X < 5) =
=
= 0.96 .
b) P(X > 8) = P(8 < X < ∞) = 1/
- 1/∞ = 1/64 - 0 = 0.016
c) P(6 < X < 10) =
=
= 0.018 .
d) P(x < 6 or X > 10) = P(1 < X < 6) + P(10 < X < ∞)
=
+ (1/
- 1/∞) = 1 - 1/36 + 1/100 + 0 = 0.982
e) We have to find x such that P(X < x) = 0.75 ;
⇒ P(1 < X < x) = 0.75
⇒
= 0.75
⇒
= 1 - 0.75 = 0.25
⇒
=
⇒
= 4 ⇒ x =
Therefore, value of x such that P(X < x) = 0.75 is 2.
Answer:
15/4 +6y
Step-by-step explanation:
See Image below:)