Answer:
Required result : (a) Divergent. (b) Convergent. (c) Divergent, (d) Not exists. (e) Not exists.
Step-by-step explanation:
By the definition of integral test the series for a integer n and a continuous function f(x) which is monotonic decreasing in
then the infinite series
converges or diverges if and only if the improper integral
converges or diverges.
Given,
(a) ![\sum_{n=1}^{\infty}9^n(\ln(9^n))^n](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D9%5En%28%5Cln%289%5En%29%29%5En)
![=5(\ln(9))^5\sum_{n=1}^{\infty}9^nn^5\hfill (1)](https://tex.z-dn.net/?f=%3D5%28%5Cln%289%29%29%5E5%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D9%5Enn%5E5%5Chfill%20%281%29)
Then,
![\int_{1}^{\infty}9^n(\ln(9^n))^5](https://tex.z-dn.net/?f=%5Cint_%7B1%7D%5E%7B%5Cinfty%7D9%5En%28%5Cln%289%5En%29%29%5E5)
![=5(\ln 9)^5\int_{1}^{\infty}9^nn^5dn\hfill (2)](https://tex.z-dn.net/?f=%3D5%28%5Cln%209%29%5E5%5Cint_%7B1%7D%5E%7B%5Cinfty%7D9%5Enn%5E5dn%5Chfill%20%282%29)
Let,
![I=\int 9^nn^9](https://tex.z-dn.net/?f=I%3D%5Cint%209%5Enn%5E9)
By using integral calculator we get,
![I=\dfrac{\left(2\ln\left(3\right)n\left(\ln\left(3\right)n\left(\ln\left(3\right)n\left(\ln\left(3\right)n\left(2\ln\left(3\right)n-5\right)+10\right)-15\right)+15\right)-15\right)\mathrm{e}^{2\ln\left(3\right)n}}{8\ln^6\left(3\right)}](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7B%5Cleft%282%5Cln%5Cleft%283%5Cright%29n%5Cleft%28%5Cln%5Cleft%283%5Cright%29n%5Cleft%28%5Cln%5Cleft%283%5Cright%29n%5Cleft%28%5Cln%5Cleft%283%5Cright%29n%5Cleft%282%5Cln%5Cleft%283%5Cright%29n-5%5Cright%29%2B10%5Cright%29-15%5Cright%29%2B15%5Cright%29-15%5Cright%29%5Cmathrm%7Be%7D%5E%7B2%5Cln%5Cleft%283%5Cright%29n%7D%7D%7B8%5Cln%5E6%5Cleft%283%5Cright%29%7D)
which is divergent. Therefore given (2) is divergent and so is (1).
(b) ![\sum_{n=1}^{\infty}ne^{-8n}\hfill (3)](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dne%5E%7B-8n%7D%5Chfill%20%283%29)
Then in integral form,
![\int_{1}^{\infty}ne^{-8n}](https://tex.z-dn.net/?f=%5Cint_%7B1%7D%5E%7B%5Cinfty%7Dne%5E%7B-8n%7D)
![=\frac{9e^{-8}}{64}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B9e%5E%7B-8%7D%7D%7B64%7D)
![=4.72\times 10^{-5}](https://tex.z-dn.net/?f=%3D4.72%5Ctimes%2010%5E%7B-5%7D)
Thus given series (3) is convergent.
(c) ![\sum_{n=1}^{\infty}ne^{8n}\hfill (4)](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dne%5E%7B8n%7D%5Chfill%20%284%29)
Then in integral form,
![\int_{1}^{\infty}ne^{-8n}](https://tex.z-dn.net/?f=%5Cint_%7B1%7D%5E%7B%5Cinfty%7Dne%5E%7B-8n%7D)
Now let,
![I=\int n e^{-8n}](https://tex.z-dn.net/?f=I%3D%5Cint%20n%20e%5E%7B-8n%7D)
Applying integral calculator we get,
![I=\dfrac{\left(8n-1\right)\mathrm{e}^{8n}}{64}](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7B%5Cleft%288n-1%5Cright%29%5Cmathrm%7Be%7D%5E%7B8n%7D%7D%7B64%7D)
which is divergent and thus,
is divergent. So, given series (4) is divergent.
(d) ![\sun_{n=1}^{\infty}ln(3n)^n](https://tex.z-dn.net/?f=%5Csun_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dln%283n%29%5En)
which is in integral form,
![\int_{1}^{\infty}\ln (3n)^n](https://tex.z-dn.net/?f=%5Cint_%7B1%7D%5E%7B%5Cinfty%7D%5Cln%20%283n%29%5En)
during integration since there is no any antiderivative, the result could not be found.
(e) ![\sum_{n=1}^{\infty}n+7(-4)^n](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dn%2B7%28-4%29%5En)
Integral form is,
![\int_{1}^{\infty}n+7^{(-4)^n}](https://tex.z-dn.net/?f=%5Cint_%7B1%7D%5E%7B%5Cinfty%7Dn%2B7%5E%7B%28-4%29%5En%7D)
Let,
![I=\int _{1}^{b}n+7^{(-4)^n}](https://tex.z-dn.net/?f=I%3D%5Cint%20_%7B1%7D%5E%7Bb%7Dn%2B7%5E%7B%28-4%29%5En%7D)
Using integral calculator we get,
![I=\frac{1}{2\ln(-4)}\Big[\ln(-4)b^2-2\Gamma(0,-\ln(7)(-4)^b)+2\Gamma(0,4\ln(7))-\ln(-4)\Big]](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B1%7D%7B2%5Cln%28-4%29%7D%5CBig%5B%5Cln%28-4%29b%5E2-2%5CGamma%280%2C-%5Cln%287%29%28-4%29%5Eb%29%2B2%5CGamma%280%2C4%5Cln%287%29%29-%5Cln%28-4%29%5CBig%5D)
But,
not exists.