Answer:
<h2><u>since </u><u>DE≅EF</u></h2>
<u>CD=</u><u>CF </u><u>(</u><u>cpct)</u>
<u>
</u>
<h2><u>hope</u><u> it</u><u> helps</u><u> you</u><u><</u><u>3</u></h2>
This question is Incomplete
Complete Question
Researchers recorded the speed of ants on trails in their natural environments. The ants studied, Leptogenys processionalis, all have the same body size in their adult phase, which made it easy to measure speeds in units of body lengths per second (bl/s). The researchers found that, when traffic is light and not congested, ant speeds vary roughly Normally, with mean 6.20 bl/s and standard deviation 1.58 bl/s. (a) What is the probability that an ant's speed in light traffic is faster than 5 bl/s? You may find Table B useful. (Enter your answer rounded to four decimal places.)
Answer:
0.7762
Step-by-step explanation:
We solve using z score formula
z = (x-μ)/σ, where
x is the raw score
μ is the population mean
σ is the population standard deviation.
Population mean = 6.20 bl/s
Standard deviation = 1.58 bl/s.
x = 5 bl/s
z = 5 - 6.20/1.58
z = -0.75949
The probability that an ant's speed in light traffic is faster than 5 bl/s is P( x > 5)
Probability value from Z-Table:
P(x<5) = 0.22378
P(x>5) = 1 - P(x<5)
= 1 - 22378
= 0.77622
Approximately to 4 decimal places = 0.7762
The probability that an ant's speed in light traffic is faster than 5 bl/s is 0.7762
The given equation x-1/x-2+x+3/x-4=2/(x-2).(4-x) is correct. the answer is proved.
According to the statement
we have given that the equation and we have to prove that the given answer is a correct answer for those equivalent equation.
So, The given expression are:

And we have to prove the answer.
So, For this


Then the equation become

Now solve it then

Now take 2 common from answer then equation become

Hence proved.
So, The given equation x-1/x-2+x+3/x-4=2/(x-2).(4-x) is correct. the answer is proved.
Learn more about equations here
brainly.com/question/2972832
#SPJ1
Answer:
the answer should be 3/10
Step-by-step explanation:
if you look at the photo you can solve it from there