Answer:
Every straight line can be represented by an equation: y = mx + b. ... The equation of any straight line, called a linear equation, can be written as: y = mx + b, where m is the slope of the line and b is the y-intercept. The y-intercept of this line is the value of y at the point where the line crosses the y axis.
Step-by-step explanation:
hope this helps.
:)
Answer:
i think it is no solution
one
one
many
Step-by-step explanation: i dont know for sure if i am right so i wold double check tried my best
Answer:
Step-by-step explanation:
recalling that d = rt, distance = rate * time.
we know Hector is going at 12 mph, and he has already covered 18 miles, how long has he been biking already?

so Hector has been biking for those 18 miles for 3/2 of an hour, namely and hour and a half already.
then Wanda kicks in, rolling like a lightning at 16mph.
let's say the "meet" at the same distance "d" at "t" hours after Wanda entered, so that means that Wanda has been traveling for "t" hours, but Hector has been traveling for "t + (3/2)" because he had been biking before Wanda.
the distance both have travelled is the same "d" miles, reason why they "meet", same distance.
![\bf \begin{array}{lcccl} &\stackrel{miles}{distance}&\stackrel{mph}{rate}&\stackrel{hours}{time}\\ \cline{2-4}&\\ Hector&d&12&t+\frac{3}{2}\\[1em] Wanda&d&16&t \end{array}\qquad \implies \begin{cases} \boxed{d}=(12)\left( t+\frac{3}{2} \right)\\[1em] d=(16)(t) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blcccl%7D%20%26%5Cstackrel%7Bmiles%7D%7Bdistance%7D%26%5Cstackrel%7Bmph%7D%7Brate%7D%26%5Cstackrel%7Bhours%7D%7Btime%7D%5C%5C%20%5Ccline%7B2-4%7D%26%5C%5C%20Hector%26d%2612%26t%2B%5Cfrac%7B3%7D%7B2%7D%5C%5C%5B1em%5D%20Wanda%26d%2616%26t%20%5Cend%7Barray%7D%5Cqquad%20%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Cboxed%7Bd%7D%3D%2812%29%5Cleft%28%20t%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright%29%5C%5C%5B1em%5D%20d%3D%2816%29%28t%29%20%5Cend%7Bcases%7D)
