When you divide 287 by 68, when it is not rounded, you will get 4.22058823529... (repeated decimal), but when you round it, you can either get the following: 4.22, 4.2, or 4 (choose which ever you want to pick out of these rounded forms.)
Hope this helped!
Nate
![\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ \begin{array}{rllll} % left side templates f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bfunction%20transformations%7D%0A%5C%5C%20%5Cquad%20%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Brllll%7D%20%0A%25%20left%20side%20templates%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%28%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%29%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Ay%3D%26%7B%7B%20%20A%7D%7D%28%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%29%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%5Csqrt%7B%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%7D%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%28%5Cmathbb%7BR%7D%29%5E%7B%7B%7B%20%20B%7D%7Dx%2B%7B%7B%20%20C%7D%7D%7D%2B%7B%7B%20%20D%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0Af%28x%29%3D%26%7B%7B%20%20A%7D%7D%20sin%5Cleft%28%7B%7B%20B%20%7D%7Dx%2B%7B%7B%20%20C%7D%7D%20%20%5Cright%29%2B%7B%7B%20%20D%7D%7D%0A%5Cend%7Barray%7D)
![\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative} \\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \end{array}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bllll%7D%0A%25%20right%20side%20info%0A%5Cbullet%20%5Ctextit%7B%20stretches%20or%20shrinks%20horizontally%20by%20%20%7D%20%7B%7B%20%20A%7D%7D%5Ccdot%20%7B%7B%20%20B%7D%7D%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20flips%20it%20upside-down%20if%20%7D%7B%7B%20%20A%7D%7D%5Ctextit%7B%20is%20negative%7D%0A%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20horizontal%20shift%20by%20%7D%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5C%5C%0A%5Cqquad%20%20if%5C%20%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5Ctextit%7B%20is%20negative%2C%20to%20the%20right%7D%5C%5C%5C%5C%0A%5Cqquad%20%20if%5C%20%5Cfrac%7B%7B%7B%20%20C%7D%7D%7D%7B%7B%7B%20%20B%7D%7D%7D%5Ctextit%7B%20is%20positive%2C%20to%20the%20left%7D%5C%5C%5C%5C%0A%5Cend%7Barray%7D)
![\bf \begin{array}{llll} \bullet \textit{ vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}} \end{array}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bllll%7D%0A%0A%0A%5Cbullet%20%5Ctextit%7B%20vertical%20shift%20by%20%7D%7B%7B%20%20D%7D%7D%5C%5C%0A%5Cqquad%20if%5C%20%7B%7B%20%20D%7D%7D%5Ctextit%7B%20is%20negative%2C%20downwards%7D%5C%5C%5C%5C%0A%5Cqquad%20if%5C%20%7B%7B%20%20D%7D%7D%5Ctextit%7B%20is%20positive%2C%20upwards%7D%5C%5C%5C%5C%0A%5Cbullet%20%5Ctextit%7B%20period%20of%20%7D%5Cfrac%7B2%5Cpi%20%7D%7B%7B%7B%20%20B%7D%7D%7D%0A%5Cend%7Barray%7D)
now, with that template above in mind, let's see this one
![\bf parent\implies f(x)=|x| \\\\\\ \begin{array}{lllcclll} f(x)=&3|&1x&+2|&+4\\ &\uparrow &\uparrow &\uparrow &\uparrow \\ &A&B&C&D \end{array}](https://tex.z-dn.net/?f=%5Cbf%20parent%5Cimplies%20f%28x%29%3D%7Cx%7C%0A%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Blllcclll%7D%0Af%28x%29%3D%263%7C%261x%26%2B2%7C%26%2B4%5C%5C%0A%26%5Cuparrow%20%26%5Cuparrow%20%26%5Cuparrow%20%26%5Cuparrow%20%5C%5C%0A%26A%26B%26C%26D%0A%5Cend%7Barray%7D)
A=3, B=1, shrunk by AB or 3 units, about 1/3
C=2, horizontal shift by C/B or 2/1 or just 2, to the left
D=4, vertical shift upwards of 4 units
check the picture below
1,387 because you just add all the bricks (421+623+343)
9514 1404 393
Answer:
- 113.0 cm²
- 2464.0 in²
- 95.0 ft²
Step-by-step explanation:
1. The area of a circle is given by the formula ...
A = πr² . . . . . where r is the radius
The radius is shown as 6 cm, so the area is ...
A = (3.14)(6 cm)² = 113.0 cm²
__
2. The radius is shown as 28 in. We note that this is a number divisible by 7, so we choose 22/7 for π.
A = (22/7)(28 in)² = 2464 in² . . . . see comment
__
3. The radius is half the diameter, so is 11/2 = 5.5 ft. Then the area is ...
A = (3.14)(5.5 ft)² = 95.0 ft²
_____
<em>Additional comment</em>
If you use a more exact value of π for problem 2, the area is 2463.0 in². If you use 3.14 as the value of π, the area rounds to 2461.8 in². For these values of pi (3.14 or 22/7), the answer is only good to about 3 significant digits. 2464 has more significant digits, so digits beyond the first 3 may be in error.