Answer:
a) 1186
b) Between 1031 and 1493.
c) 160
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with mean of 1262 and a standard deviation of 118.
This means that ![\mu = 1262, \sigma = 118](https://tex.z-dn.net/?f=%5Cmu%20%3D%201262%2C%20%5Csigma%20%3D%20118)
a) Determine the 26th percentile for the number of chocolate chips in a bag.
This is X when Z has a p-value of 0.26, so X when Z = -0.643.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-0.643 = \frac{X - 1262}{118}](https://tex.z-dn.net/?f=-0.643%20%3D%20%5Cfrac%7BX%20-%201262%7D%7B118%7D)
![X - 1262 = -0.643*118](https://tex.z-dn.net/?f=X%20-%201262%20%3D%20-0.643%2A118)
![X = 1186](https://tex.z-dn.net/?f=X%20%3D%201186)
(b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags.
Between the 50 - (95/2) = 2.5th percentile and the 50 + (95/2) = 97.5th percentile.
2.5th percentile:
X when Z has a p-value of 0.025, so X when Z = -1.96.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-1.96 = \frac{X - 1262}{118}](https://tex.z-dn.net/?f=-1.96%20%3D%20%5Cfrac%7BX%20-%201262%7D%7B118%7D)
![X - 1262 = -1.96*118](https://tex.z-dn.net/?f=X%20-%201262%20%3D%20-1.96%2A118)
![X = 1031](https://tex.z-dn.net/?f=X%20%3D%201031)
97.5th percentile:
X when Z has a p-value of 0.975, so X when Z = 1.96.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![1.96 = \frac{X - 1262}{118}](https://tex.z-dn.net/?f=1.96%20%3D%20%5Cfrac%7BX%20-%201262%7D%7B118%7D)
![X - 1262 = 1.96*118](https://tex.z-dn.net/?f=X%20-%201262%20%3D%201.96%2A118)
![X = 1493](https://tex.z-dn.net/?f=X%20%3D%201493)
Between 1031 and 1493.
(c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies?
Difference between the 75th percentile and the 25th percentile.
25th percentile:
X when Z has a p-value of 0.25, so X when Z = -0.675.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-0.675 = \frac{X - 1262}{118}](https://tex.z-dn.net/?f=-0.675%20%3D%20%5Cfrac%7BX%20-%201262%7D%7B118%7D)
![X - 1262 = -0.675*118](https://tex.z-dn.net/?f=X%20-%201262%20%3D%20-0.675%2A118)
![X = 1182](https://tex.z-dn.net/?f=X%20%3D%201182)
75th percentile:
X when Z has a p-value of 0.75, so X when Z = 0.675.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![0.675 = \frac{X - 1262}{118}](https://tex.z-dn.net/?f=0.675%20%3D%20%5Cfrac%7BX%20-%201262%7D%7B118%7D)
![X - 1262 = 0.675*118](https://tex.z-dn.net/?f=X%20-%201262%20%3D%200.675%2A118)
![X = 1342](https://tex.z-dn.net/?f=X%20%3D%201342)
IQR:
1342 - 1182 = 160