Q = mass x specific heat x delta T 343 = 55.0 x specific heat ( 86.0 - 19.0 ) 343 = 3685 x specific heat specific heat = 0.0931 cal /g°C
Shoutout to @hihi67
Your answer is: 0.0931 cal/g degrees C
Have an amazing day and stay hopeful!
I got you
The molecular formula for the combustion of butane in oxygen is:
2 C4H10 + 13 O2 ---> 8 CO2 + 10 H20
<span>You take the mass of carbon dioxide, 56.8g, divide by its molar mass, 44.01g/mol, to produce the moles of carbon dioxide. This is multiplied by the molar ratio of butane/CO2, (2/8) = 1/4, which gives the moles of butane required to produce the carbon dioxide. Multiply the number of moles of butane by its molar mass, 58.12g/mol, to produce the mass of butane. Mass of butane = 18.8g</span>
The solution contains 39.4% of LiF. Assume that the solution is 100ml. The molar mass of LiF is 25.939, the amount of LiF in mole would be: 100ml * 1g/ml * 39.4%/ 25.939g/mol= 1.52 mol LiF
Then the mass of the water would be: 100gram- 39.4g= 60.6g
If the molar mass of water is 18.015 the mole of the water would be: 60.6g/ 18.015g/mol= 3.36 mol
.
The mole fraction would be:1.52 mol/ 1.52+3.36= 0.339
Natural gas is nonrenewable, once its used you have to get more, after its all used up you cant use it no more.