Mole ratio:
MgCl₂ + 2 KOH = Mg(OH)₂ + 2 KCl
2 moles KOH ---------------- 1 mole Mg(OH)₂
4 moles KOH ------------------- moles Mg(OH)₂
moles Mg(OH)₂ = 4 x 1 / 2
= 2 moles of Mg(OH)₂
molar mass Mg(OH)₂ = 58g/mol
mass of Mg(OH)₂ = n x mm
mass of Mg(OH)₂ = 58 x 2
= 116 g of <span> Mg(OH)₂</span>
hope this helps!
Answer: As a result, each excited electron in an atom emits a photon of a specific wavelength. To put it another way, each excited noble gas emits a distinct hue of light. This is a reddish-orange neon light.
The required volume of water is 0.18 liters.
<h3>What is molarity?</h3>
Molarity of any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V
Moles of solute will be calculated as:
n = W/M, where
W = given mass of HCl = 32g
M = molar mass of HCl = 36.4g/mol
n = 32 / 36.4 = 0.88 mole
Given molarity of solution = 4.80M
On putting all values in the above equation, we get
V = (0.88) / (36.4) = 0.18 L
Hence required volume of water is 0.18L.
To know more about volume & concentration, visit the below link:
brainly.com/question/26762947
#SPJ1
<u>Answer:</u> The concentration of radon after the given time is 
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 3.00 days
= initial amount of the reactant = 
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.181days^{-1}=\frac{2.303}{3.00days}\log\frac{1.45\times 10^{-6}}{[A]}](https://tex.z-dn.net/?f=0.181days%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B3.00days%7D%5Clog%5Cfrac%7B1.45%5Ctimes%2010%5E%7B-6%7D%7D%7B%5BA%5D%7D)
![[A]=3.83\times 10^{-30}mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D3.83%5Ctimes%2010%5E%7B-30%7Dmol%2FL)
Hence, the concentration of radon after the given time is 
Answer:
no it is a ionic compound