Answer:
p = $ 12521.82
Step-by-step explanation:
Interest Rate = 3.6 %, Compounding Frequency: Semi-Annual, Equivalent Annual Interest Rate
%
Number of Repayments is 11 with 10 being equal in magnitude and the last one being worth $ 270, the first repayment comes at the end of Year 2
Let $ p be the level payments that required. Therefore,
![100000 = p\times \frac{1}{0.0363} \times [1-\frac{1}{(1.0363)^{10}}] \times \frac{1}{(1.0363)} + \frac{270}{(1.0363)^{12}}](https://tex.z-dn.net/?f=100000%20%3D%20p%5Ctimes%20%20%5Cfrac%7B1%7D%7B0.0363%7D%20%5Ctimes%20%5B1-%5Cfrac%7B1%7D%7B%281.0363%29%5E%7B10%7D%7D%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281.0363%29%7D%20%2B%20%5Cfrac%7B270%7D%7B%281.0363%29%5E%7B12%7D%7D)
100,000 - 176.01 = p x 7.972
p = $ 12521.82
We know that
angle (3x) and angle (9x) are supplementary angles
so
3x+9x=180°------> 12x=180°------> x=180°/12-----> x=15°
angle (9x) and angle (1) are supplementary angles
so
9x+∡1=180---------> 9*15+∡1=180
∡1=180-9*15---------> ∡1=180-135------> ∡1=45°
the answer is
∡1 is 45°
alternative method
angle 1 = angle 3x----------> vertical angles
∡1=3x-----> 3*15-----> 45°