Check the picture below.
let's firstly convert the mixed fractions to improper fractions.
![\stackrel{mixed}{7\frac{1}{2}}\implies \cfrac{7\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{15}{2}} ~\hfill \stackrel{mixed}{12\frac{1}{2}}\implies \cfrac{12\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{25}{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B7%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B7%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B12%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B12%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{\Large Areas}}{\stackrel{two~triangles}{2\left[ \cfrac{1}{2}\left(\cfrac{15}{2} \right)(10) \right]}~~ + ~~\stackrel{\textit{three rectangles}}{(10)(15)~~ + ~~\left( \cfrac{15}{2} \right)(15)~~ + ~~\left( \cfrac{25}{2} \right)(15)}} \\\\\\ 75~~ + ~~150~~ + ~~112.5~~ + ~~187.5\implies \boxed{525}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btwo~triangles%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2810%29%20%5Cright%5D%7D~~%20%2B%20~~%5Cstackrel%7B%5Ctextit%7Bthree%20rectangles%7D%7D%7B%2810%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B25%7D%7B2%7D%20%5Cright%29%2815%29%7D%7D%20%5C%5C%5C%5C%5C%5C%2075~~%20%2B%20~~150~~%20%2B%20~~112.5~~%20%2B%20~~187.5%5Cimplies%20%5Cboxed%7B525%7D)
1 is the 3rd option down
2 is the second option down
From the 64 values in the table on the left, count how many fall within the given ranges under the "classes" column in the table on the right. The "frequency" is the number of values in the data that belong to a given "class".
For example, "< -16.0" means "values below -16.0". Only one number satisfies this: -16.2 (first row, third column). So the frequency for this class is just 1.
Then for the range "-15.9 - 13.0", which probably means "numbers between 15.9 and -13.0, inclusive", the frequency is 0 because every number in the table is larger than the ones in this range.
And so on.
Answer:
a.) Commutative Property of addition
Step-by-step explanation:
Answer:
27 gallons
Step-by-step explanation:
If for every 41 miles, 3 gallons are needed. Using what we know, 369 ÷ 41 = 9. This means, to get 369 miles, we need to times the first amoiyng of gallons needed to drive 41 miles, which is 3, and times it by 9. (3×9=27) Therefore, 27 gallons of gas is needed.