Answer:
1. Proved down
2. proved down
3. f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
Step-by-step explanation:
Let us explain how to solve the question
∵ f(0) = -20, f(n) = f(n - 1) - 5 for n > 1
→ That means we have an arithmetic sequence with constant
difference -5 and first term -20
1. → f(1) means we need to find the second term, which equal the
term - 5
∵ f(1) means n = 1
∴ f(1) = f(1 - 1) - 5
∴ f(1) = f(0) - 5
∵ f(0) = -20
∴ f(1) = -20 - 5 → Proved
2. → f(3) means we need to find the third term, which equal the
second term - 5
∵ f(3) means n = 3
∴ f(3) = f(3 - 1) - 5
∴ f(3) = f(2) - 5
→ f(2) = f(1) - 5
∵ f(1) = -20 - 5
∴ f(2) = [-20 - 5] - 5 = -20 - 5 - 5
∴ f(3) = [-20 - 5 - 5] - 5
∴ f(3) = -20 - 5 - 5 - 5 → Proved
3. → From 1 and 2 we notice that the number of -5 is equal to n,
at n = 1 there is one (-5), when n= 3 there are three (-5)
∵ n = 10
∴ There are ten (-5)
∴ f(10) = -20 - 5(10)
∴ f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 → Proved
It can be written as 4 17/100
Answer:
72
Step-by-step explanation:
The area (A) of a rhombus is calculated as
A =
× d₁ × d₂ (d₁ and d₂ are the diagonals )
The diagonals bisect each other at right angles
d₁ = 2 × 6 = 12
Use the tangent ration in the upper left right triangle and the exact value
tan60° = 
tan60° =
=
=
( multiply both sides by 6 )
opp = 6
, then
d₂ = 2 × 6
= 12
Thus
A =
× 12 × 12
= 6 × 12
= 72
In the table, you can see level 1 is 5 to the first power, level 2 is 5 to the second and go on.
so in level 6 would be 5 to the sixth power
so the answer to first one is 5^6
for the second question you should know that level 2 is 5^2 and level 6 is 5^6 so 5^6/5^2 = 5^4 is the answer :))))
I hope this is helpful
have a nice day