1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
11

If log 55 = 1.74 , what is the value of log1000 55 ?

Mathematics
2 answers:
Tomtit [17]3 years ago
7 0

Answer:

10^(-2/3) + 5

Step-by-step explanation:

yeah <3 - danny

Softa [21]3 years ago
5 0
You should insert this on a calculator, if you meant log(1000.55) you’d get 3 rounded to the nearest decimal.
You might be interested in
Find the sum of the first 25 terms in this geometric series:<br> 8 + 6 + 4.5...
Ksivusya [100]

Step-by-step explanation:

Given the geometric sequence

8 + 6 + 4.5...

A geometric sequence has a constant ratio and is defined by

a_n=a_1\cdot r^{n-1}

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_{n+1}}{a_n}

\frac{6}{8}=\frac{3}{4},\:\quad \frac{4.5}{6}=\frac{3}{4}

\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}

r=\frac{3}{4}

\mathrm{The\:first\:element\:of\:the\:sequence\:is}

a_1=8

\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:

a_n=8\left(\frac{3}{4}\right)^{n-1}

\mathrm{Geometric\:sequence\:sum\:formula:}

a_1\frac{1-r^n}{1-r}

\mathrm{Plug\:in\:the\:values:}

n=25,\:\spacea_1=8,\:\spacer=\frac{3}{4}

=8\cdot \frac{1-\left(\frac{3}{4}\right)^{25}}{1-\frac{3}{4}}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{\left(1-\left(\frac{3}{4}\right)^{25}\right)\cdot \:8}{1-\frac{3}{4}}

=\frac{8\left(-\left(\frac{3}{4}\right)^{25}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}

=\frac{8\left(-\frac{3^{25}}{4^{25}}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{\frac{b}{c}}=\frac{a\cdot \:c}{b}

=\frac{\left(1-\frac{3^{25}}{4^{25}}\right)\cdot \:8\cdot \:4}{1}

\mathrm{Multiply\:the\:numbers:}\:8\cdot \:4=32

=\frac{32\left(-\frac{3^{25}}{4^{25}}+1\right)}{1}

=\frac{32\cdot \frac{4^{25}-3^{25}}{4^{25}}}{1}               ∵ \mathrm{Join}\:1-\frac{3^{25}}{4^{25}}:\quad \frac{4^{25}-3^{25}}{4^{25}}

=32\cdot \frac{4^{25}-3^{25}}{4^{25}}

=\frac{\left(4^{25}-3^{25}\right)\cdot \:32}{4^{25}}

=\frac{2^5\left(4^{25}-3^{25}\right)}{2^{50}}        ∵ \mathrm{Factor}\:32:\ 2^5,  \mathrm{Factor}\:4^{25}:\ 2^{50}

so

=\frac{4^{25}-3^{25}}{2^{45}}        ∵ \mathrm{Cancel\:}\frac{\left(4^{25}-3^{25}\right)\cdot \:2^5}{2^{50}}:\quad \frac{4^{25}-3^{25}}{2^{45}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a\pm \:b}{c}=\frac{a}{c}\pm \frac{b}{c}

=\frac{4^{25}}{2^{45}}-\frac{3^{25}}{2^{45}}      

=32-\frac{3^{25}}{2^{45}}            ∵  \frac{4^{25}}{2^{45}}=32

=32-0.024        ∵  \frac{3^{25}}{2^{45}}=0.024

=31.98            

Therefore, the sum of the first 25 terms in this geometric series: 31.98

3 0
3 years ago
18+m/4=24 solve for m
Gemiola [76]
18 + m/4 = 24

Subtract 18 from each side:

m/4 = 6

Multiply each side by 4 :

<em>m = 24 </em>
4 0
3 years ago
Read 2 more answers
A function is shown f(x) = 2/3x +3 what is the value of f (6)?
Katena32 [7]

Answer:

The answer is 28/9

Step-by-step explanation:

Step one

Given information

We are given that the function is

f(x) = 2/3x +3

And we are expected to find f(6), that is substitute the value of x with 6

Step two:

f(6)= 2/3(6)+3\\\\f(6)=2/18+3\\\\f(6)=1/9+3\\\\f(6)=1+27/9\\\\f(6)= 28/9

5 0
3 years ago
Noah bought 15 baseball cards for $9.00. Assuming that each baseball card costs the same amount, answer the following questions.
STatiana [176]

Answer:

270 dollars

Step-by-step explanation:

5 0
3 years ago
Find the missing side. round to the nearest tenth.
horrorfan [7]

Answer:

24) x = 9.2

25) x = 30.8

Step-by-step explanation:

Given

See attachment for triangles

Solving (24)

To solve for x, we make use of cosine formula

i.e.

cos(40) = adjacent ÷ hypotenuse

So, we have:

cos(40) = x ÷ 12

Multiply both sides by 12

12 cos(40) = x

12 * 0.7660 = x

x = 9.2

Solving (25)

To solve for x, we make use of sine formula

i.e.

sin(25) = opposite ÷ hypotenuse

So, we have:

sin(25) = 13 ÷ x

Multiply both sides by

x sin(25) = 13

Divide by sin(25)

x = 13 ÷ sin(25)

Using a calculator

x = 30.8

5 0
2 years ago
Other questions:
  • Complete the proof to show that ABCD is a parallelogram. BCllAD and CDllBA because the___________. therefore, ABCD is a parallel
    11·1 answer
  • Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms.
    15·2 answers
  • What is the area of this rectangle 6.03cm 3.4cm. cm2
    15·2 answers
  • Multiply.
    5·1 answer
  • Complete the second equation below so that the terms in the system align.
    5·2 answers
  • Simplify 8 over negative 4 divided by negative 3 over 9. 6 −6 12 −12
    15·1 answer
  • A long year end status report for work is 136 pages long. You need to print 19 copies for a meeting next week. How much is the p
    12·1 answer
  • pls pls pls help i give brainest and i will give 20 points and i will give a thanks plssss sove 22 and 23
    6·1 answer
  • Last Wednesday, students could choose ham or turkey sandwiches for lunch. The cafeteria made 100 sandwiches in all, 85% of which
    10·1 answer
  • What is a good approximating for 4pi^3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!