0.75^2 = 0.5625.....sq rt 0.5625 = 0.75
Answer:
a) P(x=3)=0.089
b) P(x≥3)=0.938
c) 1.5 arrivals
Step-by-step explanation:
Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.
The variable X is modeled by a Poisson process with a rate parameter of λ=6.
The probability of exactly k arrivals in a particular hour can be written as:

a) The probability that exactly 3 arrivals occur during a particular hour is:

b) The probability that <em>at least</em> 3 people arrive during a particular hour is:
![P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938](https://tex.z-dn.net/?f=P%28x%5Cgeq3%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%5D%5C%5C%5C%5C%5C%5CP%280%29%3D6%5E%7B0%7D%20%5Ccdot%20e%5E%7B-6%7D%2F0%21%3D1%2A0.0025%2F1%3D0.002%5C%5C%5C%5CP%281%29%3D6%5E%7B1%7D%20%5Ccdot%20e%5E%7B-6%7D%2F1%21%3D6%2A0.0025%2F1%3D0.015%5C%5C%5C%5CP%282%29%3D6%5E%7B2%7D%20%5Ccdot%20e%5E%7B-6%7D%2F2%21%3D36%2A0.0025%2F2%3D0.045%5C%5C%5C%5C%5C%5CP%28x%5Cgeq3%29%3D1-%5B0.002%2B0.015%2B0.045%5D%3D1-0.062%3D0.938)
c) In this case, t=0.25, so we recalculate the parameter as:

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

Answer:
2d = 58 (If you are just finding d then d = 29)
Step-by-step explanation:
69 + 53 = 122
180 - 122 = 58
A) 2.50/5= 0.5,
B) 0.5*25=$12.50
Answer:
0.45 = 45% probability that the member uses the golf course but not the tennis courts
Step-by-step explanation:
I am going to solve this question using the events as Venn sets.
I am going to say that:
Event A: Uses the golf courses.
Event B: Uses the tennis courts.
5% use neither of these facilities.
This means that 
75% use the golf course, 50% use the tennis courts
This means, respectively, by:

Probability that a member uses both:
This is
. We have that:

So

What is the probability that the member uses the golf course but not the tennis courts?
This is
, which is given by:

So

0.45 = 45% probability that the member uses the golf course but not the tennis courts