S(t) = sin(πt/6) + cos(πt/6)
Velocity = s'(t) = π/6 (cos(πt/6) - sin(πt/6))
When velocity = 0
cos(πt/6) - sin(πt/6) = 0
cos^2(πt/6) -2cos(πt/6) sin(πt/6) + sin^2(πt/6) = 0
1 - 2cos(πt/6) sin(πt/6) = 0
1 - sin(πt/3) = 0
sin(πt/3) = 1
πt/3 = arcsin(1) = π/2
t = 1.5
acceleration = s''(t) = -(π/6)^2 (cos(πt/6) + sin(πt/6))
s''(1.5) = -(π/6)^2 (cos(π/4) + sin(π/4)) = -(π/6)^2 (2/√2) = -0.3877
accerelation = -0.3877 meter/s^2
Answer:
-0.00516129032
Step-by-step explanation:
(4 - 1 - 5 - 1) - 1/(52 × 3 × 5 - 5)
-4/775
-0.005
Answer:
Use the following formulas for the tables
Step-by-step explanation:
For the tables given bellow use these formulas for part 7 a and b
y2-y1 over x1-x1
that would give us the slope then plug that into y=mx+b
Answer:
All of them except B
Step-by-step explanation:
Bisecting is splitting a line in half
Parallel lines never touch each other
Intersecting lines intersect
Corresponding lines are 2 parallel lines with a line that is going through them
Answer:
the amount after 5 years using compound continuously is $135.03
Step-by-step explanation:
The computation of the amount after 5 years using compound continuously is as follows
= Principal × e^(rate × time period)
= $110 × e^(4.2% × 5)
= $110 × 1.227525065
= $135.03
Hence, the amount after 5 years using compound continuously is $135.03
We simply applied the above formula so that the correct value could come
And, the same is to be considered