The answer is D
Sherman would still be double Clive's age (2c) and he would have aged 3 years (+3)
the tale-tell fellow is the number inside the parentheses.
if that number, the so-called "growth or decay factor", is less than 1, then is Decay, if it's more than 1, is Growth.
![\bf f(x)=0.001(1.77)^x\qquad \leftarrow \qquad \textit{1.77 is greater than 1, Growth} \\\\[-0.35em] ~\dotfill\\\\ f(x)=2(1.5)^{\frac{x}{2}}\qquad \leftarrow \qquad \textit{1.5 is greater than 1, Growth} \\\\[-0.35em] ~\dotfill\\\\ f(x)=5(0.5)^{-x}\implies f(x)=5\left( \cfrac{05}{10} \right)^{-x}\implies f(x)=5\left( \cfrac{1}{2} \right)^{-x} \\\\\\ f(x)=5\left( \cfrac{2}{1} \right)^{x}\implies f(x)=5(2)^x\qquad \leftarrow \qquad \textit{Growth} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D0.001%281.77%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B1.77%20is%20greater%20than%201%2C%20Growth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D2%281.5%29%5E%7B%5Cfrac%7Bx%7D%7B2%7D%7D%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7B1.5%20is%20greater%20than%201%2C%20Growth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D5%280.5%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B05%7D%7B10%7D%20%5Cright%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E%7B-x%7D%20%5C%5C%5C%5C%5C%5C%20f%28x%29%3D5%5Cleft%28%20%5Ccfrac%7B2%7D%7B1%7D%20%5Cright%29%5E%7Bx%7D%5Cimplies%20f%28x%29%3D5%282%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7BGrowth%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's take a peek at the second set.
![\bf f(x)=3(1.7)^{x-2}\qquad \leftarrow \qquad \begin{array}{llll} \textit{the x-2 is simply a horizontal shift}\\\\ \textit{1.7 is more than 1, Growth} \end{array} \\\\[-0.35em] ~\dotfill\\\\ f(x)=3(1.7)^{-2x}\implies f(x)=3\left(\cfrac{17}{10}\right)^{-2x}\implies f(x)=3\left(\cfrac{10}{17}\right)^{2x} \\\\\\ \textit{that fraction is less than 1, Decay} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D3%281.7%29%5E%7Bx-2%7D%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7Bthe%20x-2%20is%20simply%20a%20horizontal%20shift%7D%5C%5C%5C%5C%20%5Ctextit%7B1.7%20is%20more%20than%201%2C%20Growth%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D3%281.7%29%5E%7B-2x%7D%5Cimplies%20f%28x%29%3D3%5Cleft%28%5Ccfrac%7B17%7D%7B10%7D%5Cright%29%5E%7B-2x%7D%5Cimplies%20f%28x%29%3D3%5Cleft%28%5Ccfrac%7B10%7D%7B17%7D%5Cright%29%5E%7B2x%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bthat%20fraction%20is%20less%20than%201%2C%20Decay%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf f(x)=3^5\left( \cfrac{1}{3} \right)^x\qquad \leftarrow \qquad \textit{that fraction is less than 1, Decay} \\\\[-0.35em] ~\dotfill\\\\ f(x)=3^5(2)^{-x}\implies f(x)=3^5\left( \cfrac{2}{1} \right)^{-x}\implies f(x)=3^5\left( \cfrac{1}{2} \right)^x \\\\\\ \textit{that fraction in the parentheses is less than 1, Decay}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5Ex%5Cqquad%20%5Cleftarrow%20%5Cqquad%20%5Ctextit%7Bthat%20fraction%20is%20less%20than%201%2C%20Decay%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20f%28x%29%3D3%5E5%282%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B2%7D%7B1%7D%20%5Cright%29%5E%7B-x%7D%5Cimplies%20f%28x%29%3D3%5E5%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5Ex%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bthat%20fraction%20in%20the%20parentheses%20is%20less%20than%201%2C%20Decay%7D)
8x-12=36
Let's solve your equation step-by-step.
<span><span><span>8x</span>−12</span>=36
</span>Step 1: Add 12 to both sides.
<span><span><span><span>8x</span>−12</span>+12</span>=<span>36+12
</span></span><span><span>8x</span>=48
</span>Step 2: Divide both sides by 8.
<span><span><span>8x/</span>8</span>=<span>48/8
</span></span><span>x=6
</span>Answer: x=6
Answer:
=−ax+x2−3a+3x
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
Area of a Rectangle: A = lw
<u>Calculus</u>
Derivatives
Derivative Notation
Implicit Differentiation
Differentiation with respect to time
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u />
<u />
<u />
<u />
<u />
<u />
<u>Step 2: Differentiate</u>
- [Area of Rectangle] Product Rule:

<u>Step 3: Solve</u>
- [Rate] Substitute in variables [Derivative]:

- [Rate] Multiply:

- [Rate] Add:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Implicit Differentiation
Book: College Calculus 10e