1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
11

Simplify the following expression.

Mathematics
1 answer:
Blizzard [7]3 years ago
4 0

Answer:

\huge{  \boxed{ \sf{ \frac{1}{64} }}}

Step-by-step explanation:

\star{ \sf{ \:   \:  \: {4}^{ -  \frac{11}{3} }  \div  {4}^{ -  \frac{2}{3} } }}

\underline{ \:  \text{Remember!}} : If \sf{ {x}^{a}  \: and \:  {x}^{b} } are two algebraic terms , then their quotient is given by \sf{ {x}^{a}   \div  {x}^{b} =  {x}^{a - b} }

i.e To divide two terms with the same base, the power of divide is subtracted from the power of the dividend and the same base is taken.

\mapsto{ \sf{ {4}^{ -  \frac{11}{3} - ( -  \frac{2}{ 3})  } }}

\sf{We \: know \: that  :  ( - ) \times ( - ) = ( + )}

\mapsto{ \sf{ {4}^{ -  \frac{11}{3}  +  \frac{2}{3} } }}

Now, Simplify : -11/3 and 2/3

While performing the addition or subtraction of like fraction, you just have to add or subtract the numerator respectively in which the denominator is retained same.

\mapsto{ \sf{ {4}^{ \frac{ - 11 + 2}{3} } }}

\underline{ \text{Remember!}} : The negative and positive integers are always subtracted but posses the sign of the bigger integer

\mapsto{ \sf{ {4}^{ \frac{ - 9}{3} } }}

Divide -9 by 3

\mapsto{ \sf{ {4}^{ - 3} }}

\underline{ \text{Remember!}} : If \sf{ {a}^{  - m}} is an algebraic term , where m is a negative integer , then

\sf{ {a}^{ - m}  =  \frac{1}{ {a}^{m} } }

\mapsto{ \sf{ \frac{1}{ {4}^{3} } }}

Evaluate the power : 4³

\mapsto{ \sf{ \frac{1}{64} }}

Hope I helped!

Best regards!:D

~\text{TheAnimeGirl}

You might be interested in
What is the area of the regular polygon?
BartSMP [9]

Answer:

You could use the polygon area formula OR here's an easier solution

We draw the lines DC and DE

Angle ADC = 120°

Triangle ADC is a 30 60 90 triangle

In such a triangle Line AE = hypotenuse * sq root (3) /2

Line AE = 3 * 0.8660254038  = 2.5980762114

Line DE = 1.5

Area of Triangle ADE = .5 * 1.5 * 2.5980762114 =

1.9485571586   square meters and entire area of Triangle

ABC = 6 * 1.9485571586

which equals 11.6913429513  square meters

Step-by-step explanation:

6 0
3 years ago
Explain how to get the product of 2 times the square root of 5 and 4 times the square root of 10
Vlad1618 [11]
The square root of 5 is 2.2 and 4 times the square root of 10 is 100
6 0
3 years ago
During a bike challenge, riders have to collect various colored ribbons. Each 1/2 mile they collect a red ribbon, each 1/8 mile
Oliga [24]
One red ribbon, 6 green ribbons and 3 blue ribbons total together would be 10 ribbons
3 0
3 years ago
To solve a one-step equation, you must _____<br> the variable.
krek1111 [17]

Answer:

Isolate.

Step-by-step explanation:

To solve a one-step equation, you must isolate the variable.

For example,

3x = 9.

You must isolate x, which just means you have to get x by itself.

Divide by 3 on both sides to get x by itself.

x = 3.

The answer to this question is isolate.

8 0
3 years ago
Solve for x.<br><br> logx+log3=log18
ad-work [718]

<u>Answer:</u>

<em>The value of x in log x + log 3 = log 18 is </em><em>6</em><em>.</em>

<u>Solution:</u>

From question, given that log x + log 3 = log 18 ---- eqn 1

Let us first simplify left hand side in above equation,

We know that log m + log n = log (mn) ----- eqn 2

Adding log m and log n results in the logarithm of the product of m and n (log mn)  

By using eqn 2, log x + log 3 becomes log 3x.  

log x + log 3 = log 3x ---- eqn 3

By substituting eqn 3 in eqn 1, we get

log 3x = log 18  

Since we have log on both sides, we can cancel log and the above equation becomes,

3x = 18

x = \frac{18}{3} = 6

Thus the value of x in log x + log3 = log18 is 6

6 0
4 years ago
Read 2 more answers
Other questions:
  • When f(x)=4 what is the value of x?
    13·2 answers
  • What is the LCM of 5 , 17 and 26?​
    10·1 answer
  • In this problem we consider an equation in differential form Mdx+Ndy=0. (4x+2y)dx+(2x+8y)dy=0 Find My= 2 Nx= 2 If the problem is
    12·1 answer
  • Which of the following are situations that can be modeled with a quadratic function? Select all that apply.
    10·2 answers
  • Ok fr I need to stop ima get banned lol <br><br><br> last one yallll
    7·2 answers
  • Have a nice day;) it’s ok to be tired but keep pushing. Just a lil while more
    10·1 answer
  • Good night lol <br><br><br>what ever..........​
    7·1 answer
  • What are the solutions to the system of equations? y=x2−7x+12y=−x+7
    14·1 answer
  • What is the value of the last digit in 3,500.45
    9·1 answer
  • Which function has a constant additive rate of change of 14
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!