Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
First, we need to get the number of moles:
from the reaction equation when Y4+ takes 4 electrons and became Y, X loses 4 electrons and became X4+
∴ the number of moles n = 4
we are going to use this formula:
㏑K = n *F *E/RT
when K is the equilibrium constant = 4.98 x 10^-5
and F is Faraday's constant = 96500
and the constant R = 8.314
and T is the temperature in Kelvin = 298 K
and n is number of moles of electrons = 4
so, by substitution:
㏑4.98 x 10^-5 = 4*96500*E / 8.314*298
∴E = -0.064 V
Answer:
Sorry pal! Didn't understand your language.
:(
Explanation:
T₁ = 40°C + 273.15 = 313.15 Kelvin T₂ = 30°C + 273.15 = 303.15 Kelvin
Solving Gay-Lussac's Law for P₁ we get:
P₁ = P₂ • T₁ ÷ T₂ P₁ = 760 torr • 313.15 K ÷ 303.15 K P₁ = 785.07 torr
Using the calculator, we click on the P1 button.
We then enter the 3 numbers 760 313.15 and 303.15 into the correct boxes then click "CALCULATE" and get our answer of 785.07 torr.