<span>What would you use if you needed to determine the density of an object?
</span>Balance and Graduate Cylinder
Hope This Helps! <span>\(★ω★)/</span>
If the water molecule was linear instead of bent the water would no longer produce hydrogen bonds.
<u>Explanation:</u>
- Yes, If the water molecule was linear instead of bent the water would no longer produce hydrogen bonds.
- The water would no longer generate hydrogen bonds.
- It will lose its polar features and nearly all of its features will change such as boiling point, water tension and solubility.
- It would be more like to gas, rather than liquid.
- If the water was in the linear, the water would have all the features and it would produce the hydrogen bonds.
Answer:
D. Ni²⁺
Explanation:
We know at once that the answer cannot be A or C, because Ni and Cu are already in their lowest oxidation states.
The correct answer must be either B or D.
An electrolytic cell is the opposite of a galvanic cell. In the former, the reaction proceeds spontaneously. In the latter, you must force the reaction to occur.
One strategy to solve this problem is:
- Look up the standard reduction potentials for the half reaction·
- Figure out the spontaneous direction.
- Write the equation in the reverse direction.
1. Standard reduction potentials
E°/V
Cu²⁺ + 2e⁻ ⟶ Cu; 0.3419
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
2. Galvanic Cell
We reverse the direction of the more negative half cell and add.
<u>E°/V
</u>
Ni ⟶ Ni²⁺ + 2e⁻; 0.257
<u>Cu²⁺ + 2e⁻ ⟶ Cu; </u> 0.3419
Ni + Cu²⁺ ⟶ Cu + Ni²⁺; 0.599
This is the spontaneous direction.
Cu²⁺ is reduced to Cu.
3. Electrochemical cell
<u>E°/V</u>
Ni²⁺ + 2e⁻ ⟶ Ni; -0.257
<u>Cu ⟶ Cu²⁺ + 2e⁻; </u> <u>-0.3419</u>
Cu + Ni²⁺ ⟶ Ni + Cu²⁺; -0.599
This is the non-spontaneous direction.
Ni²⁺ is reduced to Ni in the electrolytic cell.
Answer:
Explanation:
NCl3 does not dissolve in water because it is a nonpolar molecule which is different with water. NCl3 is nonpolar due to the difference in electronegativities between 3 atoms of Cl and 1 atom if N2.
<span>Barium - A) Great conductor of heat and electricity
Potassium - B) Malleable and highly reactive
Boron - C) Has properties of both metals and nonmetals
Neon - D) Nonreactive gas
Let's look at each element and it's place on the periodic chart to see what matches.
Potassium - This is on the far left column for alkali metals. This means it's highly reactive and since it's a metal, it's both malleable and conductive. Looking at the available options, "B) Malleable and highly reactive" is the best choice.
Barium - This element is in the second column from the left, so it's a fairly reactive metal, but not nearly as reactive as Potassium above. So "A) Great conductor of heat and electricity" is the best choice here, although I wouldn't call it "great". The resistivity of barium is about 20 times larger than copper.
Boron - This element is about in the middle of the periodic chart, so it does have the properties of both metals and nonmetals. So "C) Has properties of both metals and nonmetals" is the best choice.
Neon - This is in the far right column for noble gasses. Very non-reactive. So "D) Nonreactive gas" is the best choice.</span>