10 electrons
Explanation:
The maximum number of electrons in a single d-subshell is 10 electrons.
The d-notation stands for an azimuthal quantum number or secondary quantum number.
This subshell can only accommodate a maximum of 10 electrons.
d- subshell has five orbitals
Each orbital is able to accommodate 2 electrons.
Therefore 5 x 2 = 10 electrons
learn more:
Atomic orbital brainly.com/question/1832385
#learnwithBrainly
Answer:
Here's what I get.
Explanation:
(b) Wavenumber and wavelength
The wavenumber is the distance over which a cycle repeats, that is, it is the number of waves in a unit distance.

Thus, if λ = 3 µm,

(a) Wavenumber and frequency
Since
λ = c/f and 1/λ = f/c
the relation between wavenumber and frequency is

Thus, if f = 90 THz

(c) Units
(i) Frequency
The units are s⁻¹ or Hz.
(ii) Wavelength
The SI base unit is metres, but infrared wavelengths are usually measured in micrometres (roughly 2.5 µm to 20 µm).
(iii) Wavenumber
The SI base unit is m⁻¹, but infrared wavenumbers are usually measured in cm⁻¹ (roughly 4000 cm⁻¹ to 500 cm⁻¹).
Answer:
Hope this helps
Explanation:
A generalization I can make about the Huang River is that the Huang River is the most important river in China. Also called the Yellow River, it is where historians believe ancient Chinese people settle in to develop its civilization on the banks of the river for the many benefits it had for life and agriculture. However, early Chinese people had to learn how to control the floods of the river in order to survive ad prosper.
<u>Answer:</u>
All living things are not made of cells.
Answer:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the rate is given as:
![rate=-\frac{1}{2} \frac{\Delta [HBr]}{\Delta t}=\frac{\Delta [Br_2]}{\Delta t} =\frac{\Delta [H_2]}{\Delta t}](https://tex.z-dn.net/?f=rate%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7B%5CDelta%20%5BHBr%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%5CDelta%20%5BBr_2%5D%7D%7B%5CDelta%20t%7D%20%3D%5Cfrac%7B%5CDelta%20%5BH_2%5D%7D%7B%5CDelta%20t%7D)
It is necessary to remember that each concentration to time interval is divided into the stoichiometric coefficient, that is why HBr has a 1/2. Moreover, the concentration HBr is negative since it is a reactant and it has a negative rate due to its consumption.
Therefore, the answer is:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Best regards.