Answer:
The answer to your question is 0.269 g of Pb
Explanation:
Data
Lead solution = 0.000013 M
Volume = 100 L
mass = 0.269 g
atomic mass Pb = 207.2 g
Chemical reaction
2Pb(s) + O₂(aq) + 4H⁺(aq) → 2H₂O(l) + 2Pb₂⁺(aq)
Process
1.- Calculate the mass of Pb in solution
Formula
Molarity = 
Solve for number of moles
Number of moles = Volume x Molarity
Substitution
Number of moles = 100 x 0.000013
Number of moles = 0.0013
2.- Calculate the mass of Pb formed.
207.2 g of Pb ----------------- 1 mol
x g ----------------- 0.0013 moles
x = (0.0013 x 207.2) / 1
x = 0.269 g of Pb
There are a total of four quantum numbers that govern the
electrons. These are the principal quantum number (n), the angular quantum
number (l), the magnetic quantum number (ml) and lastly the spin quantum number
(ms). Each electron has a unit set of the four quantum numbers.
Since the first 3 quantum numbers is already specified, so
the remaining to be filled is the ms quantum number which can only have values
of +1/2 and -1/2. So we have 2 electrons.
Answer:
<span>2 electrons</span>
Let the mass of the solute be x
So, the equation would be
x/2.5+x ×100 = 23.22
x/2.5+x = 23.22/100
100x = 58.05 + 23.22x
100x - 23.22x = 58.05
76.78x = 58.05
x =0.756 ≈ 0.76 litres
Crystal field splitting is the difference in energy between d orbitals of ligands. Crystal field splitting number is denoted by the capital Greek letter Δ. Crystal field splitting explains the difference in color between two similar metal-ligand complexes.
<h3>What is crystal field splitting of d-orbitals?</h3>
The splitting of fivefold degenerate d orbitals of the metal ion into two levels in a tetrahedral crystal field is the representation of two sets of orbitals as Td. The electrons in dx2-y2 and dz2 orbitals are less repelled by the ligands than the electrons present in dxy, dyz, and dxz orbitals.
<h3>Which of the following factors affect crystal field splitting energy?</h3>
There are the following factors that affect the crystal field splitting. These are the nature of ligands, coordination number, arrangement of ligand, size of a metal atom, charge on the metal atom, size of ligands, electronegativity, and interatomic distance.
Learn more about crystal field splitting here:
<h3>
brainly.com/question/13004475</h3>
<h3>#SPJ4</h3>