Answer:
d toxic algae blooms
Explanation:
because it is eutrophication
Administrative data section of the patient record
Answer:
The order must be K2→K1, since the permanently active K1 allele (K1a) is able to propagate the signal onward even when its upstream activator K2 is inactive (K2i). The reverse order would have resulted in a failure to signal (K1a→K2i), since the permanently active K1a kinase would be attempting to activate a dead K2i kinase.
Explanation:
- You characterize a double mutant cell that contains K2 with type I mutation and K1 with type II
mutation.
- You observe that the response is seen even when no extracellular signal is provided.
- In the normal pathway, i f K1 activat es K2, we expect t his combinat ion of two m utants to show no response with or without ext racell ular signal. This is because no matt er how active K1 i s, it would be unable to act ivate a mutant K2 that i s an activit y defi cient. If we reverse the order, K2 activating K1, the above observati on is valid. Therefore, in the normal signaling pathway, K2 activates K1.
Answer:
c. cysteine
Explanation:
Cysteine is a non essential amino acid. It contains sulfur in form of thiol group. A disulfide bond or bridge is formed between two thiol groups. It is represented as S-S. It is formed by oxidation of two cysteine molecules. The resultant disulfide bond is called as cystine which connects two polypeptide chains.
Cysteine is the only amino acid capable of forming disulfide bridge. It stabilizes protein's globular structure and plays an important role in protein folding and stability. Cysteine is required for protein synthesis, metabolic processes and detoxification. It is the part of beta-keratin which is the main protein in nails, hair and skin. If cysteine is mutated, formation of disulfide bond will be affected.