It's false. Mass is a way of measuring how much matter an object contains, where as weight measures how hard gravity is pulling on an object. While on earth, these are typically interchangeable. However, if you were to go to Mars, your mass would stay the same, but the weight will be different. This is because you still contain the same amount of matter, but the gravity's pull will be different because the moon has a different gravitational pull than the earth. Hope this helps!
The shape is missing but let's consider it a semi-cylinder attached to the rectangular prism.
Given:
radius = 4.5 mm
<span>Height = 11 mm </span>
<span>Volume of cylinder = (1/2)(pi)(4.5)^2(11) (the shape is divided into half)
V = 349.89 mm cubed
Volume of prism = L x W x H
= 9 x 11 x 6
= 594 mm cubed
Total volume of the composite shape = 111.375 + 594
= 943.89 mm cubed
Rounded answer = 944 mm cubed.</span>
Answer:
The angular acceleration is same at all the points in the body.
Option (D) is correct.
Explanation:
Given:
When a rigid body rotates about a fixed axis, all the points in the body have the same,
For finding which quantity is same we use pure rotational concept,

Where
angular frequency,
radius of rigid body
When a rigid body rotates about a fixed axis angular velocity of all the points in the body are same.
But the tangential speed, tangential acceleration, linear displacement, and centripetal acceleration depend on the position of the points and hence they are not the same.
Therefore, the angular acceleration is same at all the points in the body.
Answer:
Answer:
4, 2, 5, 3, 1
Explanation:
The neuron remains at RMP unless stimulated. The stimulus results in opening of stimulus channels, this causes depolarization. if the extent of depolarization reaches to the level of threshold, the sodium and potassium channels begin opening but potassium channels are slow to open. Hence at first sodium goes out causing further depolarization until it reaches the peak at which the potassium channels open and the sodium channels close. This causes the potassium to rush our causing repolarization i.e. return of the membrane potential to RMP but the potassium channels are slow to close and it leads to hyperpolarization (undershoot) making the membrane potential more negative due to excessive movement of potassium outside the cell. Once the potassium channels close, the leak channels and Na K pump acts to return the potential to RMP.
Explanation: