When we cook a marshmallow on a metal poker tool over an open flame, there are three ways in which heat energy is transferred: Conduction, convection, and radiation.
<h3>Heat energy transfer</h3>
Heat transfer is the natural transfer of heat from an object with a higher temperature to an object with a lower temperature. Heat transfer can occur in three ways, namely conduction, convection, and radiation.
- Conduction occurs when heat flows from a place with a high temperature to a place with a lower temperature using a fixed heat-conducting medium. Heat transfer from the open flame to the marshmallows via direct fire contact with the marshmallows is an example of conduction.
- Convection is the transfer of heat by means of a stream in which the intermediate substance also moves. If the particles move and cause heat to propagate, convection will occur. The hot air rising from the flames burning the marshmallows is an example of convection.
- Radiation is heat transfer without a medium. Radiation can also usually be accompanied by light. The direct transfer of heat from the flame to the marshmallow in the form of waves is an example of radiation.
Learn more about heat transfer here: brainly.com/question/16055406
#SPJ4
Since the bulb consumes 100 watts of power and its efficiency is 95%,
it generates 95 watts of light energy and 5 watts of heat energy whenever
it's turned on.
5 watts means 5 joules of energy per second.
(2.5 hours) x (3,600 seconds/hour) = 9,000 seconds
(9,000 seconds) x (5 joules/second) = 45,000 joules of heat in 2.5 hours
The force of gravity the masses exert on each other. If one of the masses is doubled , the force of gravity between the objects is doubled. Increases , the force of gravity decreases.
Answer:
yes
Explanation:
because when you slow down, the resistance slows with the speed.
3750 seconds to travel that far