Answer:
4.36 seconds
Explanation:
According to the question;
- Force is 550 N
- Mass of the car is 1200 kg
- Velocity of the car is 2.0 m/s
We are needed to find the time the car must the tow track pull the car.
- From Newton's second law of motion;
- Impulsive force, F = Mv÷t , where m is the mass, v is the velocity and t is the time.
Rearranging the formula;
t = mv ÷ F
Thus;
Time = (1200 kg × 2.0 m/s²) ÷ 550 N
= 4.36 seconds
Thus, the time needed to pull the car is 4.36 seconds
It transfers energy through the source of the sound. Your ear detects sound waves when vibrating air particles cause your ear drum to vibrate
Answer:
okay here is a thing I learned when I was younger in my middle school:
Explanation:
my teacher would tell me that metals are considered a weak metals are on the left side and the good metals are located on the right side because the only way I remembered was the right means it is really strong and the left is weak and not that supportive. but I think that's how I still think it is or other people may have their own opinions. but hope this helped out with your question!
5.52 × 10 to the 5th power (100000) . In scientific notation you need to have a decimal numver times 10 to the power of something so you can divide 552000 by 10 5 times. So in order to get 552000 you need to have 10 to the 4th power and 5.52
1.53 m/s toward the beach
Explanation:
The magnitude of the velocity of the runner is given by:

where
d is the displacement of the runner
t is the time taken
In this case, d=110 m and t=72 s, so the velocity of the runner is

Velocity is a vector, so it consists of both magnitude and direction: we already calculate the magnitude, while the direction is given by the problem, toward the beach.