Rosa is conducting the scientific practice of observation.
The salesman is telling you the average magnitude of the car's acceleration.
| Acceleration | = (change in speed) / (time for the change)
| Acceleration | = (60 mi/hr) / (6 sec)
| Acceleration | = 10 miles/hr-sec
That would be 36,000 miles per hour squared,
or 0.0028 mile per second squared.
Answer:
Explanation:
Givens
vi = 10 m/s
a = 1.5 m/s^2
d = 600 m
vf = ?
Formula
vf^2 = vi^2 + 2*a*d
Solution
vf^2 = 10^2 + 2*1.5 * 600
vf^2 = 100 + 1800
vf^2 = 1900
sqrt(vf^2) = sqrt(1900)
vf = 43.59 m/s
To solve this problem we will apply the linear motion kinematic equations. We will find the two components of velocity and finally by geometric and vector relations we will find both the angle and the magnitude of the vector. In the case of horizontal speed we have to
The vertical component of velocity is
Here,
h = Height
g = Gravitational acceleration
t = Time
= Vertical component of velocity
The direction of the velocity will be given by the tangent of the components, then
The magnitude is given vectorially as,
Therefore the angle is 55.59° and the velocity is 26.37m/s
Explanation:
Centripetal acceleration is:
a = v² / r
a = (4.0 m/s)² / 0.60 m
a = 26.6 m/s²