The relationship between the period of an oscillating spring and the attached mass determines the ratio of the period to
.
Response:
- The ratio of the period to
is always approximately<u> 2·π : 1</u>
<u />
<h3>How is the value of the ratio of the period to

calculated?</h3>
Given:
The relationship between the period, <em>T</em>, the spring constant <em>k</em>, and the
mass attached to the spring <em>m</em> is presented as follows;

Therefore, the fraction of of the period to
, is given as follows;

2·π ≈ 6.23
Therefore;

Which gives;
- The ratio of the period to
is always approximately<u> 2·π : 1</u>
Learn more about the oscillations in spring here:
brainly.com/question/14510622
Answer:
a.v=u+v/2
a.v=s/t
combining two equation we get,
u+v/2=s/t
(u+v)t/2=s
(u+v)t/2=s
{u+(u+at)}t/2=s
(u+u+at)t/2=s
(2u+at)t/2=s
2ut+at^2/2=s
2ut/2+at^2/2=s
UT +1/2at^2=s
proved
a=v-u/t
at=v-u
u+at=v
5,625 x 10 ⁻¹⁰ is <span>the force between a 3 Coulomb charge and a 2 Coulomb charge separated by a distance of 5 meters.</span>
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
The correct option is 0.5 M
Calculation
Wavelength is defined as the ratio of velocity of a wave to its frequency. It is measure in meters. Mathematically, wavelength is given by the following formula:
Wavelength = wave velocity / frequency
From the details given in the question,
Wavelength =?
Velocity = 340 m/s
Frequency = 680 HZ
Wavelength = 340 /680 = 0.5
Therefore, wavelength = 0.5 M