Answer:
B
Explanation:
The others are natural growth developments
Well, there's a lot of friction going on there, so the snowball gradually
loses kinetic energy just from bouncing and plowing through the snow
on the ground.
But I don't think you're asking about that. I think you're ignoring that
for the moment, and asking how its kinetic energy changes as its
mass increases. We know that
Kinetic Energy = (1/2) (mass) (speed²)
and THAT seems to say that more mass means more kinetic energy.
So maybe the snowball's kinetic energy increases as it picks up
more mass.
Don't you believe it !
Remember: Energy always has to come from somewhere ... a motor,
a jet, a push, gravity ... something ! It doesn't just appear out of thin air.
If the snowball were rolling down hill, then it could get more kinetic energy
from gravity. But if it's rolling on level ground, then it can never have any
more kinetic energy than you gave it when you pushed it and let it go.
If snow or leaves stick to it and its mass increases, then its speed must
decrease, in order to keep the same kinetic energy.
Answer:
Explanation:
i )
In a conservative field like gravitational field , loss of potential energy or work done , depends upon the initial and final point and not the manner in which 2 nd point has been reached . Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
Hence , due to increased mass of larger child , his kinetic energy will be greater .
ii ) Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
iii ) Smaller child undergo free fall , therefore , he will fall with acceleration g . The larger child falls on curved path . So , he will have only a component of
vertical g at any moment . hence average acceleration will be less.