Answer:
It is explained in the explanation section
Explanation:
When the lift starts going downwards, it will start accelerating downwards. After a while, it will start moving with a constant velocity.
Constant velocity means that acceleration is zero and so the man will not feel any weight loss.
Now, Once the lift achieves constant velocity the acceleration is zero hence he will not experience any weight loss.
However, when the lift is in uniform motion, the lift and the man will fall down with an acceleration(a) that is less than that due to gravity(g) . Thus, the man will feel an apparent weight F which is not equal to zero.
Answer:
320 N/m
Explanation:
From Hooke's law, we deduce that
F=kx where F is applied force, k is spring constant and x is extension or compression of spring
Making k the subject of formula then

Conversion
1m equals to 100cm
Xm equals 25 cm
25/100=0.25 m
Substituting 80 N for F and 0.25m for x then

Therefore, the spring constant is equal to 320 N/m
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Explanation:
If you like my answer than please mark me brainliest thanks