Answer:
Explanation:
Frictional force acting on the child = μ mg cosθ
, μ is coefficient of kinetic friction , m is mass of child θ is inclination
work done by frictional force
μ mg cosθ x d , d is displacement on inclined plane
work done = .13 x 276 x cos34 x 5.9
= 175.5 J
This work will be converted into heat energy.
b ) Initial energy of child = mgh + 1/2 m v ² , h is height , v is initial velocity
= 276 x 5.9 sin34 + 1/2 x 276 / 9.8 x .518² [ mass m = 276 / g ]
= 910.59 + 3.77
= 914.36 J
loss of energy due to friction = 175.5
Net energy at the bottom
= 738.86 J
If v be the velocity at the bottom
1/2 m v² = 738 .86
.5 x (276 / 9.8) x v² = 738.86
v² = 52.47
v = 7.24 m /s .
Answer:
F = 195 N
Explanation:
F = GMm/d²
F = 6.67e-11(5.97e24)(24) / (7.00e6)²
F = 195 N
Answer:
Thanks to the rod and cone cells in our eyes, our brains can use light to build images. Recent studies identified a third type of cell that responds to light and dark. Three research groups have now confirmed that melanopsin is the pigment that this cell-type uses, opening possible avenues for treating blind people.
Explanation:
The minimum frequency is

while the maximum frequency is

Using the relationship between frequency f of a wave, wavelength

and the speed of the wave v, we can find what wavelength these frequencies correspond to:


So, the wavelengths of the radio waves of the problem are within the range 188-545 m.
Pollen formation is the microsporangia of the male cone (flower) and it occurs on the stigma.