Answer:
27,000 m
450 m/s
Explanation:
Assuming the initial velocity is 0 m/s:
v₀ = 0 m/s
a = 15 m/s²
t = 60 s
A) Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (60 s) + ½ (15 m/s²) (60 s)²
Δy = 27,000 m
B) Find: v_avg
v_avg = Δy / t
v_avg = 27,000 m / 60 s
v_avg = 450 m/s
Answer:
B and C
Explanation:
Because EMWs are varying magnetic and electric radiation traveling at 90° to each other propagating energy form one place to another through vibration of these magnetic and electric fields
<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>-</u><u>1</u><u>:</u><u>-</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>2</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>3</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>4</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>5</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>6</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>7</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>8</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>9</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>10</u>

Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
Answer:
The correct option is;
Still constant
Explanation:
The relative refractive index ₁n₂ between the two medium can be as follows;

Therefore, given that the speed of light in medium 1 is constant and the speed of light on medium 2 is also constant, the relative refractive index ₁n₂ = c₁/c₂ is always constant.