The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>
Answer:
The answer is below
Explanation:
Newton's law of gravity states that the force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The law is expressed by the formula:

The masses and distances for this question is in common units, Therefore the result would be in ratios
a) 4 MEarth / 2 MSolar / 3 AU
The force (F) = (4 * 3) / 3² = 4/3
b) 1 MEarth / 1 MSolar / 1 AU
The force (F) = (1 * 1) / 1² = 1
c) 1 MEarth / 2 MSolar / 2 AU
The force (F) = (1 * 2) / 2² = 1/2