The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water:
Here is my step-by-step-work. Let me know if you have any questions! :)
The statement that can be used to answer this question is:
"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."
The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.