1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
2 years ago
11

Which of the following is equivalent to 180 centimeters?

Mathematics
2 answers:
mafiozo [28]2 years ago
6 0

Answer:

1.8 meters there are 100 cm in every meter.

Step-by-step explanation:

By combining with the name of the unit the prefixes deka, hecto, and kilo meaning, respectively, 10, 100, and 1000, and deci, centi, and milli, meaning, respectively, one-tenth, one-hundredth, and one-thousandth

den301095 [7]2 years ago
4 0
The answer is 1.8 meters
You might be interested in
zoey made 6 3/4 cups of fruit salad for a picnic they ate 1/3 of the fruit salad for a picnic they ate 1/3 of the fruit salad Ho
liberstina [14]
They ate 2 3/4 cups?
3 0
3 years ago
Evaluate. 5(-6) = _____
Brums [2.3K]

ANSWER

Your answer is -30

3 0
3 years ago
Solve the system <br> {f (x) = 2x-1<br> {g (x) = x^2-4
Murrr4er [49]

Answer:

2 sets of possible solutions:

x=3, y = 5

and

x=-1, y = -3

Step-by-step explanation:

Using the graphical method, (see attached)

you can graph both equations and find their intersection points.

From the attached plot, you can see that the graphs intersect at (3,5) and (-1,-3)

Alternatively, you can solve this numerically by solving the following system of equations. You will get the same answer.

y = 2x + 1 ------------------- eq. (1)

y = x² - 4 ------------------- eq. (2)

4 0
3 years ago
4 2/5 = _?_ - 1 2/3.
Salsk061 [2.6K]
The answer is 1 2/3+4 2/5=91/15
6 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • It's important to re-evaluate financial goals periodically. In which of the following situations would it be necessary to change
    15·2 answers
  • 1. Simplify the problem below -3x^-2​
    5·2 answers
  • F(x)=2x+1<br>if f(x)=4, what is the value of x?​
    10·1 answer
  • Marita orders 12 yards of material to make banners. If she needs 1 foot of fabric for each banner, how many banners can she make
    10·1 answer
  • Find the x intercept of the line with the given equation. -6x+4y=12
    7·2 answers
  • PLEASE ANSWER
    8·2 answers
  • THIS IS A QUESTION FROM MY FINAL EXAM PLEASE HELP
    10·2 answers
  • Try, check, and revise or write an equation to solve
    11·1 answer
  • What is an equation of the line that passes through the points (-7, 3)<br> and (-4, 3)?
    5·1 answer
  • Discribe the sides of polygon c
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!