We are given that the
coordinates of the vertices of the rhombus are:
<span><span>A(-6, 3)
B(-4, 4)
C(-2, 3)
D(-4, 2)
To solve this problem, we must plot this on a graphing paper or graphing
calculator to clearly see the movement of the graph. If we transform this by
doing a counterclockwise rotation, then the result would be:
</span>A(-6, -3)</span>
B(-4, -4)
C(-2, -3)
D(-4, -2)
And the final
transformation is translation by 3 units left and 2 units down. This can still
be clearly solved by actually graphing the plot. The result of this
transformation would be:
<span>A′(6, -8)
B′(7, -6)
C′(6, -4)
D′(5, -6)</span>
<span>The answers to this problem are:<span>(<span>±5</span></span>√3/8,±5/8)<span>Here is the solution:
Step 1: <span><span><span>x2</span>+<span>y2</span>=<span>2516</span>[2]</span><span><span>x2</span>+<span>y2</span>=<span>2516</span>[2]</span></span>
Step 2: Substitute:<span>
</span><span><span>8<span><span>(<span>25/16</span>)^</span>2</span>=25(<span>x^2</span>−<span>y^2</span>)
</span><span>8<span><span>(<span>25/16</span>)^</span>2</span>=25(<span>x^2</span>−<span>y^2</span>)</span></span>
</span><span>x^2</span>−<span>y^2</span>=<span>25/32</span><span>.
Add [2] and [3]:<span>
</span><span>2<span>x^2</span>=<span>75/32
</span><span>x^2</span>=<span>75/74</span></span>
<span>x=±5</span></span>√3/8<span>
Substitute into [2]:<span>
</span><span><span>75/64</span>+<span>y^2</span>=<span>50/32
</span><span>y^2</span>=<span>25/64</span></span>
<span>y=±<span>5/8</span></span>
</span>
</span>
Answer:c
Step-by-step explanation:
when you set (x-6) and (x-1) to zero you get 6 and 1
Slope does not exist. A zero in the numerator means you have a horizontal line.