Answer:
1.43 (w/w %)
Explanation:
HCl reacts with NH3 as follows:
HCl + NH3 → NH4+ + Cl-
<em>1 mole of HCl reacts per mole of ammonia.</em>
Mass of NH3 is obtained as follows:
<em>Moles HCl:</em>
0.02999L * (0.1068mol / L) = 3.203x10-3 moles HCl = <em>Moles NH3</em>
<em>Mass NH3 in the aliquot:</em>
3.203x10-3 moles NH3 * (17.031g / mol) = 0.0545g.
Mass of sample + water = 22.225g + 75.815g = 98.04g
Dilution factor: 98.04g / 14.842g = 6.6056
That means mass of NH3 in the sample is:
0.0545g * 6.6056 = 0.36g NH3
Weight percent is:
0.36g NH3 / 25.225g * 100
<h3>1.43 (w/w %)</h3>
Answer:
All flowering is regulated by the integration of environmental cues into an internal sequence of processes. These processes regulate the ability of plant organs to produce and respond to an array of signals. The numerous regulatory switches permit precise control over the time of flowering.
Explanation:
1-PRIMARY ALKANOL 2-SECONDARY ALKANOL 3-TERTIARY ALKANOL
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.
The movement of charged particles cannot pass through an electrolyte to produce an electric current.
True
False
FALSE