When PH + POH = 14
∴ POH = 14 -7 = 7
when POH = -㏒[OH-]
7 = -㏒ [OH-]
∴[OH-] = 10^-7
by using ICE table:
Mn(OH)2(s) ⇄ Mn2+ (aq) + 2OH-(aq)
initial 0 10^-7
change +X +2X
Equ X (10^-7 + 2X)
when Ksp = [Mn2+][OH-]^2
when Ksp of Mn(OH)2 = 4.6 x 10^-14
by substitution:
4.6 x 10^-14 = X*(10^-7+2X)^2 by solving this equation for X
∴ X =2.3 x 10-5 M
∴ The solubility of Mn(OH)2 in grams per liter (when the molar mass of Mn(OH)2 = 88.953 g/mol
= 2.3 x10^-5 moles/L * 88.953 g/mol
= 0.002 g/ L
Answer:
Iron is oxidized while chlorine is reduced.
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reaction:
2FeCl₂ + Cl₂ → 2FeCl₃
in this reaction the oxidation state of iron is increased from +2 to +3. That's why iron get oxidized and it is reducing agent because it reduced the chlorine. The chlorine is reduced from -2 to -3 and it is oxidizing agent because it oxidized the iron.
2Fe⁺²Cl₂⁻²
2Fe⁺³Cl₃⁻³
The iron atom gives it three electrons to three atoms of chlorine and gain positive charge while chlorine atom accept the electron and form anion.
Answer:
A
Explanation:
Iron has the ground state electronic configuration [Ar]3d64s2
Fe2+ has the electronic configuration [Ar]3d6.
In an octahedral crystal field, there are two sets of degenerate orbitals; the lower lying three t2g orbitals, and the higher level two degenerate eg orbitals. Strong field ligands cause high octahedral crystal field splitting, there by separating the two sets of degenerate orbitals by a tremendous amount of energy. This energy is much greater than the pairing energy required to pair the six electrons in three degenerate orbitals. Since CN- is a strong field ligand, it leads to pairing of six electrons in three degenerate orbitals
The answer for the following question is answered below.
- <em><u>Therefore the new pressure of the gas is 1.76 atm.</u></em>
Explanation:
Given:
Initial pressure of the gas = 1.34 atm
Initial temperature of the gas = 273 K
final temperature of the gas = 312 K
To solve:
Final temperature of the gas
We know;
From the ideal gas equation
P × V = n × R × T
So;
from the above equation we can say that
<em>P ∝ T</em>
= constant
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
= 1.76 atm
<em><u>Therefore the new pressure of the gas is 1.76 atm.</u></em>
A catalyst lowers the activation energy needed to start a reaction