Answer:
The distance travel before stopping is 1.84 m
Explanation:
Given :
coefficient of kinetic friction 
Zak's speed 
Gravitational acceleration

Work done by frictional force is given by,




m
Therefore, the distance travel before stopping is 1.84 m
Answer:
i = 4.9 A
Explanation:
The expression for the magnetic force in a wire carrying a current is
F = i L x B
bold letters indicate vectors.
The direction of the cable is towards the East, the direction of the magnetic field is towards the North, so the vector product is in the vertical direction (z-axis) upwards and the weight of the cable is vertical downwards. Let's apply the equilibrium condition
F - W = 0
i L B = m g
They indicate the linear density of the cable λ = 0.2 kg / m
λ = m / L
m = λ L
we substitute
i B = λ g
i = 
let's calculate
i = 0.2 9.8 / 0.4
i = 4.9 A
An energy equation is a chemical equation which involves the energy that is evolved or absorbed in the reaction.
<h3>What is energy?</h3>
The term energy refers to the ability to do work. An energy equation is a chemical equation which involves the energy that is evolved or absorbed in the reaction.
This question is incomplete as the former energy equation is not shown. However, such equations can be used to know an endothermic or exothermic reaction.
Learn more about energy: brainly.com/question/1932868?
#SPJ4
Answer:
c. both have same energy
Explanation:
The complete question is
suppose you have two cans, one with milk, and the other with refried beans. The cans have essentially the same size, shape, and mass. If you release both cans at the same time, on a downhill ramp, which can has more energy at the bottom of the ramp? ignore friction and air resistance..
a. can with beans
b. can with milk
c. both have same energy
please explain your answer
Since both cans have the same size, shape, and mass, and they are released at the same height above the ramp, they'll possess the same amount of mechanical energy. This is because their mechanical energy, which is the combination of their potential and kinetic energy are both dependent on their mass. Also, having the same physical quantities like their size and shape means that they will experience the same environmental or physical factors, which will be balanced for both.
The simplest way to do this is to set up equivalent fractions, like this-

=

Solve for x by using cross multiplication.
40*2.2= 88
1*x=88
x=88
Therefore, the boy weighs 88lbs.