Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.
<span>Heat is radiated, atmospheric moisture condenses at a rate greater than that at which it can evaporate, resulting in the formation of water droplets.</span>
Answer:
AFter 3.5 s, the wagon is moving at: 
Explanation:
Let's start by finding first the net force on the wagon, and from there the wagon's acceleration (using Newton's 2nd Law):
Net force = 250 N + 178 N = 428 N
Therefore, the acceleration from Newton's 2nd Law is:

So now we apply this acceleration to the kinematic expression for velocity in an object moving under constant acceleration:
